Project description:We used RNA-seq to profile E. coli K-12 MG1655 strains subjected to adaptive laboratory evolution after knockout of endogenous glucose-6-phosphate isomerase (pgi) and subsequent expression of heterologous version of the pgi gene from Pseudomonas aeruginosa and Bacillus megaterium.
Project description:We have performed adaptive laboratory evolution of E. coli pdhR gene deletion strain to examine the adaptive strategies of E. coli.
Project description:We used RNA-seq to profile E. coli K-12 MG1655 strains subjected to adaptive laboratory evolution after chorismate synthase knockouts. Either isochorismate synthase (menF) or isochorismate synthase AND chorismate lyase (ubiC) was deleted from a strain of E. coli K-12 MG1655 that had already been previously adapted for growth on glucose minimal media. RNA-seq profiles of the original glucose-adapted strain, the 2 deletion strains, and 4 laboratory-evolved strains from each deletion are included in duplicate. ubiC catalyzes the first committed step of ubiquinone synthesis, an important molecule for the electron transport chain. Thus, these experiments allowed assessment of cellular adaptations to restore energy metabolism capability.
Project description:To understand the mechanism of isopropanol tolerance of Escherichia coli for improvement of isopropanol production, we performed genome re-sequencing and transcriptome analysis of isopropanol tolerant E. coli strains obtained from parallel adaptive laboratory evolution under IPA stress.
Project description:To overcome the inhibition caused by the fermentation supernatant in the late fermentation stage of docosahexaenoic acid (DHA)-producing Crypthecodinium cohnii, fermentation supernatant-based adaptive laboratory evolution (FS-ALE) was conducted. The cell growth and DHA productivity of the evolved strain (FS280) obtained after 280 adaptive cycles corresponding to 840 days of evolution were increased by 161.87% and 311.23%, respectively, at 72 h under stress conditions and increased by 19.87% and 51.79% without any stress compared with the starting strain, demonstrating the effectiveness of FS-ALE.
Project description:We carried out adaptive laboratory evolution of an E. coli strain lacking four genes (adhE, pta, ldhA, frdA) involved in acetyl-CoA consumption, allowing the efficient utilization of acetate as its sole carbon and energy source. The transcriptomes according to the medium status (M9 aceate, M9 glucose) of the evolved strain (SBA01) and its parent strain (DSM01) were compared using RNA-seq.