Project description:We applied an RNA capture and amplification technique, Selective Capture of Transcribed Sequences (SCOTS), and microarray hybridization to identify S. Typhi transcripts expressed in the blood of five humans infected with S. Typhi in Bangladesh. In total, we detected the expression of mRNAs for 2046 S. Typhi genes (44% of the S. Typhi genome) in human blood; expression of 912 genes was detected in all 5 patients, and expression of 1100 genes was detected in 4 or more patients. Identified transcripts were associated with the virulence-associated PhoP regulon, Salmonella pathogenicity islands, the use of alternative carbon and energy sources, synthesis and transport of iron, thiamine, and biotin, and resistance to antimicrobial peptides and oxidative stress. The most highly represented group were genes currently annotated as encoding proteins designated as hypothetical, unknown, or unclassified. Of the 2046 detected transcripts, 1320 (29% of the S. Typhi genome) had significantly different levels of detection in human blood compared to in vitro cultures; detection of 141 transcripts was significantly different in all 5 patients, and detection of 331 transcripts varied in at least 4 patients. These mRNAs encode proteins of unknown function, those involved in energy metabolism, transport and binding, cell envelope, cellular processes, and pathogenesis. We confirmed increased expression of a subset of identified mRNAs by quantitative-PCR. We compared transcriptional profiles of S. Typhi from the blood of infected humans to S. Typhi grown in vitro
Project description:Part of a study to characterise the two component regulatory system yehUT of Salmonella enterica serovar Salmonella Typhi and Typhimurium. 24 Samples examined, 12 of strain Salmonella Typhi BRD948 and 12 of strain Salmonella Typhimurium ST4/74.
Project description:Salmonella enterica subsp. enterica contains more than 2,600 serovars of which four are of major medical relevance for humans. While the typhoidal serovars (Typhi and Paratyphi A) are human-restricted and cause enteric fever, non-typhoidal Salmonella serovars (Typhimurium and Enteritidis) have a broad host range and predominantly cause gastroenteritis. In this study, we compared the core proteomes of Salmonella Typhi, Paratyphi A, Typhimurium and Enteritidis using contemporary proteomics. Five isolates, covering different geographical origins, and one reference strain per serovar were grown in vitro to the exponential phase. Protein levels of orthologous proteins between serovars were compared and subjected to gene ontology term enrichment and inferred regulatory interactions. Differential expression of the core proteomes of the typhoidal serovars appears mainly related to cell surface components and, for the non-typhoidal serovars, to pathogenicity. Our findings may guide future development of novel diagnostics and vaccines, and understanding of disease progression.
2019-05-13 | PXD011154 | Pride
Project description:Genomic surveillance of Salmonella Typhi
Project description:The diversity and environmental distribution of the nosZ gene, which encodes the enzyme responsible for the consumption of nitrous oxide, was investigated in marine and terrestrial environments using a functional gene microarray. The microbial communities represented by the nosZ gene probes showed strong biogeographical separation, with communities from surface ocean waters and agricultural soils significantly different from each other and from those in oceanic oxygen minimum zones. Atypical nosZ genes, usually associated with incomplete denitrification pathways, were detected in all the environments, including surface ocean waters. The abundance of nosZ genes, as estimated by quantitative PCR, was highest in the agricultural soils and lowest in surface ocean waters.
Project description:We applied an RNA capture and amplification technique, Selective Capture of Transcribed Sequences (SCOTS), and microarray hybridization to identify S. Typhi transcripts expressed in the blood of five humans infected with S. Typhi in Bangladesh. In total, we detected the expression of mRNAs for 2046 S. Typhi genes (44% of the S. Typhi genome) in human blood; expression of 912 genes was detected in all 5 patients, and expression of 1100 genes was detected in 4 or more patients. Identified transcripts were associated with the virulence-associated PhoP regulon, Salmonella pathogenicity islands, the use of alternative carbon and energy sources, synthesis and transport of iron, thiamine, and biotin, and resistance to antimicrobial peptides and oxidative stress. The most highly represented group were genes currently annotated as encoding proteins designated as hypothetical, unknown, or unclassified. Of the 2046 detected transcripts, 1320 (29% of the S. Typhi genome) had significantly different levels of detection in human blood compared to in vitro cultures; detection of 141 transcripts was significantly different in all 5 patients, and detection of 331 transcripts varied in at least 4 patients. These mRNAs encode proteins of unknown function, those involved in energy metabolism, transport and binding, cell envelope, cellular processes, and pathogenesis. We confirmed increased expression of a subset of identified mRNAs by quantitative-PCR.
Project description:Part of a study to characterise the two component regulatory system yehUT of Salmonella enterica serovar Salmonella Typhi and Typhimurium.