Project description:Diversification of effector function, driven by a co-evolutionary arms race, enables pathogens to establish compatible interactions with their hosts. Structurally conserved plant pathogenesis-related PR-1 and PR-1-like (PR-1L) proteins are involved in plant defense and fungal virulence, respectively. It is unclear how fungal PR-1L counteracts plant defense. Here, we show that Ustilago maydis UmPR-1La and yeast ScPRY1 with conserved phenolic detoxification functions are Ser/Thr-rich region-mediated cell-surface localization proteins. However, UmPR-1La has gained additional specialized activity in eliciting hyphal-like formation, suggesting that U. maydis deploys UmPR-1La to sense phenolics and direct their growth in plants. U. maydis also hijacks plant cathepsin B-like 3 (CatB3) to release functional CAPE-like peptides after cleaving a conserved CNYD motif of UmPR-1La to subvert plant immunity for promoting fungal virulence. Surprisingly, CatB3 avoids cleavage of plant PR-1s, despite the presence of the same conserved CNYD motif. Our work highlights that UmPR-1La has acquired additional dual roles to suppress plant defense and sustain the infection process of fungal pathogens.
Project description:Objectives: Colistin remains a last-line treatment for multidrug-resistant Acinetobacter baumannii and combined use of colistin and carbapenems has shown synergistic effects against multidrug-resistant strains. In order to understand the bacterial responses to these antibiotics we analysed the transcriptome of A. baumannii following exposure to each.
Project description:A LysM Receptor-like Kinase Mediates Chitin Perception and Fungal Resistance in Arabidopsis; Jinrong Wan,1 Xuecheng Zhang,1 David Neece,2 Katrina M. Ramonell,3 Steve Clough,2,4 Sung-yong Kim,1 Minviluz Stacey,1 and Gary Stacey1*; 1Division of Plant Sciences, National Center for Soybean Biotechnology, C.S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211, USA; 2Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; 3Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; 4US Department of Agriculture, Soybean/Maize Germplasm, Pathology and Genetics Research, Urbana, IL 61801, USA; *To whom correspondence should be addressed. E-mail: staceyg@missouri.edu; Abstract: Chitin, a polymer of N-acetyl-D-glucosamine, is found in fungal cell walls, but not in plants. Plant cells are capable of perceiving chitin fragments (chitooligosaccharides) to trigger various defense responses. We identified a LysM receptor-like protein (AtLysM RLK1) that is required for the perception of chitooligosaccharides in Arabidopsis. Mutation of this gene blocked the induction of almost all chitooligosaccharide-responsive genes (CRGs) and led to more susceptibility to fungal pathogens, but not to a bacterial pathogen. In addition, exogenously applied chitooligosaccharides enhanced resistance against both fungal and bacterial pathogens in the wild-type plants, but not in the mutant. Together, our data strongly suggest AtLysM RLK1 is the chitin receptor or a key part of the receptor complex and chitin is a PAMP (pathogen-associated molecular pattern) in fungi recognized by the receptor leading to the induction of plant innate immunity against fungal pathogens. Since LysM RLKs were also recently shown to be critical for the perception of the rhizobial lipo-chitin Nod signals, our data suggest that LysM RLKs not just recognize friendly symbiotic rhizobia (via their lipo-chitin Nod signals), but also hostile fungal pathogens (via their cell wall chitin). These data suggest a possible evolutionary relationship between the perception mechanisms of Nod signals and chitin by plants. Experiment Overall Design: wild type Col-0 and chitin receptor mutants treated with or without chitooctaose
Project description:A LysM Receptor-like Kinase Mediates Chitin Perception and Fungal Resistance in Arabidopsis Jinrong Wan,1 Xuecheng Zhang,1 David Neece,2 Katrina M. Ramonell,3 Steve Clough,2,4 Sung-yong Kim,1 Minviluz Stacey,1 and Gary Stacey1* 1Division of Plant Sciences, National Center for Soybean Biotechnology, C.S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211, USA 2Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 3Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA 4US Department of Agriculture, Soybean/Maize Germplasm, Pathology and Genetics Research, Urbana, IL 61801, USA *To whom correspondence should be addressed. E-mail: staceyg@missouri.edu Abstract: Chitin, a polymer of N-acetyl-D-glucosamine, is found in fungal cell walls, but not in plants. Plant cells are capable of perceiving chitin fragments (chitooligosaccharides) to trigger various defense responses. We identified a LysM receptor-like protein (AtLysM RLK1) that is required for the perception of chitooligosaccharides in Arabidopsis. Mutation of this gene blocked the induction of almost all chitooligosaccharide-responsive genes (CRGs) and led to more susceptibility to fungal pathogens, but not to a bacterial pathogen. In addition, exogenously applied chitooligosaccharides enhanced resistance against both fungal and bacterial pathogens in the wild-type plants, but not in the mutant. Together, our data strongly suggest AtLysM RLK1 is the chitin receptor or a key part of the receptor complex and chitin is a PAMP (pathogen-associated molecular pattern) in fungi recognized by the receptor leading to the induction of plant innate immunity against fungal pathogens. Since LysM RLKs were also recently shown to be critical for the perception of the rhizobial lipo-chitin Nod signals, our data suggest that LysM RLKs not just recognize friendly symbiotic rhizobia (via their lipo-chitin Nod signals), but also hostile fungal pathogens (via their cell wall chitin). These data suggest a possible evolutionary relationship between the perception mechanisms of Nod signals and chitin by plants. Keywords: chitooctaose, chitin receptor mutant
Project description:Diversification of effector function, driven by a co-evolutionary arms race, enables pathogens to establish compatible interactions with hosts. Structurally conserved plant pathogenesis-related PR-1 and PR-1-like (PR-1L) proteins are involved in plant defense and fungal virulence, respectively. It is unclear how fungal PR-1L counters plant defense. Here, we show that Ustilago maydis UmPR-1La and yeast ScPRY1, with conserved phenolic resistance functions, are Ser/Thr-rich region-mediated cell-surface localization proteins. However, UmPR-1La has gained specialized activity in sensing phenolics and eliciting hyphal-like formation to guide fungal growth in plants. Additionally, U. maydis hijacks maize cathepsin B-like 3 (CatB3) to release functional CAPE-like peptides by cleaving UmPR-1La’s conserved CNYD motif, subverting plant CAPE-primed immunity and promoting fungal virulence. Surprisingly, CatB3 avoids cleavage of plant PR-1s, despite the presence of the same conserved CNYD motif. Our work highlights that UmPR-1La has acquired additional dual roles to suppress plant defense and sustain the infection process of fungal pathogens.
Project description:A first line of defense against pathogen infections is the recognition of pathogen-associated molecular patterns (PAMPs), leading to PAMP-triggered immunity (PTI). MicroRNAs (miRNAs) are primarily known as central regulators of plant development, but a few have also been connected to immunity. We have found that several fungal pathogens lead to a reduction in miR396 levels, suggesting that miR396 are negative regulators of downstream defense responses. In agreement with such as scenario, constitutive attenuation of miR396 activity enhances resistance to infection by fungal pathogens, while increased miR396 activity reduces pathogen resistance. We conclude that constitutive reduction of miR396 levels confer a primed state for enhanced defense reactions
2017-02-28 | GSE76819 | GEO
Project description:Prospective genome sequencing of multidrug-resistant bacterial pathogens
Project description:There is an urgent need for novel antibiotics against carbapenem and 3rd generation cephalosporin-resistant Gram-negative pathogens, for which the last-resort antibiotics have lost most of their efficacy. We describe here a novel class of synthetic antibiotics that was inspired from natural product-derived scaffolds. The antibiotics have an unprecedented mechanism of action, which targets the main component (BamA) of the Bam folding machinery required for folding and insertion of ß-barrel proteins into the outer membrane of Gram-negative bacteria. This OMPTA (outer membrane protein-targeting antibiotic) class shows potent activity against multidrug-resistant Gram-negative ESKAPE pathogens and overcomes colistin-resistance both in vitro and in vivo. A clinical candidate has the potential to address life threatening Gram-negative infections with high unmet medical need.
Project description:Candida auris has emerged as a significant healthcare-associated pathogen, posing a serious challenge due to its multidrug-resistant nature. Given the pre-existing constraints in the discovery and provision of new antifungals, there is thus an urgent imperative to design effective strategies to tackle this pressing global concern. Here, we screened a chemical library and identified phenyl-carbohydrazide derivatives with potent activity against both C. auris and the most prevalent human fungal pathogen, C. albicans. SPB00525 (N'-(2,6-Dichlorophenyl)-5-nitro-2-furohydrazide) exhibited potent activity against different strains that were resistant to standard antifungals. Using drug-induced haploinsufficient profiling, transcriptomics and metabolomic analysis, we uncovered that Ole1, a ∆(9) fatty acid desaturase, is most likely the target of SPB00525. We also found that another SPB00525 analog, HTS06170 (N'-(2,6-Dichlorophenyl)-4-methyl-1,2,3-thiadiazole-5-carbohydrazide) had a superior antifungal activity against both C. auris and C. albicans. Both SPB00525 and HTS06170 act as antivirulence agents and inhibited the invasive hyphal growth and biofilm formation of C. albicans. SPB00525 and HTS06170 attenuated fungal damage to human enterocytes and ameliorate survival of Galleria mellonella larvae used as a model of systemic candidiasis. These data, suggest that inhibiting ∆(9) fatty acid desaturase activity represents a potential therapeutic approach for treating fungal infection caused by the superbug C. auris and the most prevalent human fungal pathogen, C. albicans.
Project description:Plant pathogens can cause serious diseases that impact global agriculture1. Understanding how the plant immune system naturally restricts pathogen infection holds a key to sustainable disease control in modern agricultural practices. However, despite extensive studies into the molecular and genetic basis of plant defense against pathogens since the 1950s2,3, one of the most fundamental questions in plant pathology remains unanswered: how resistant plants halt pathogen growth during immune activation. In the case of bacterial infections, a major bottleneck is an inability to determine the global bacterial transcriptome and metabolic responses in planta. Here, we developed an innovative pipeline that allows for in planta high-resolution bacterial transcriptome analysis with RNA-Seq, using the model plant Arabidopsis thaliana and the foliar bacterial pathogen Pseudomonas syringae. We examined a total of 27 combinations of plant immunity and bacterial virulence mutants to gain an unprecedented insight into the bacterial transcriptomic responses during plant immunity. We were able to identify specific bacterial transcriptomic signatures that are linked to bacterial inhibition during two major forms of plant immunity: pattern-triggered immunity and effector-triggered immunity. Among them, regulation of a P. syringae sigma factor gene, involved in iron regulation and an unknown process(es), was found to play a causative role in bacterial restriction during plant immunity. This study unlocked the enigmatic mechanisms of bacterial growth inhibition during plant immunity; results have broad basic and practical implications for future study of plant diseases.