Project description:There are 18 ready-to-eat food samples (8 ready-to-eat meat, 7 ready-to-eat vegetables and 3 ready-to-eat fruit) and 6 human faecal samples. The samples were sequenced on the Illumina, NovaSeq PE150.
| PRJEB33440 | ENA
Project description:sequencing of bacterial community dynamics in ready-to-eat chicken which is stored at different temperatures.
Project description:Listeria monocytogenes is the ubiquitous food-borne pathogen which causes listeriosis, a disease with a high mortality rate, mostly transmitted through contaminated ready-to-eat foods (EFSA, 2018). To better understand the systemic response of such microorganism exposed at three environmental factors (T, pH and NaCl), the proteome of a L. monocytogenes strain, which was isolated from a meat product (Coppa di testa) linked to a listeriosis outbreak occurred in Marche region (Italy) in 2016, was investigated in order to identify differences in its protein patterns.
Project description:Listeria monocytogenes is a ubiquitous and psychrophilic foodborne pathogen commonly found in raw materials, ready to eat products and food environments. It was previously demonstrated that L. monocytogenes can grow faster at low temperature when unsaturated fatty acids (UFA) are present in its environment. In this study, we used comparative gene expression profiling of RNA-sequencing data to understand the impact of UFA on the behavior and cold adaptation of L. monocytogenes. We demonstrate that the incorporation of UFA into the membrane induces changes in the regulation of overall fatty acid biosynthesis, which prompts us to propose two hypotheses for UFA synthesis in L. monocytogenes. The general stress response is also highly impacted by the incorporation of UFA into the membrane at low temperature. In particular, we hypothesize that transcriptional regulation of cspB is not a temperature dependent mechanism, but could be related to a membrane fluidity stimulus. Furthermore, when UFA are incorporated into the membrane at low temperature, we observed overexpression of genes involved in flagella assembly. This study sheds light on the cold adaptation of L. monocytogenes in the presence of exogenous FA and on potential concerns for controlling these bacteria in food environments.
Project description:Persistence of Listeria monocytogenes in retail deli environments is a serious food safety issue, potentially leading to cross-contamination of ready-to-eat foods such as deli meats, salads, and cheeses. We previously discovered strong evidence of L. monocytogenes persistence in delis across multiple states. We hypothesized that this was correlated with isolates’ innate characteristics, such as biofilm-forming capacity or gene differences.We further chose four isolates for RNA-sequencing analysis and compared their global biofilm transcriptome to their global planktonic transcriptome. Analysis of biofilm vs planktonic gene expression did not show the expected differences in gene expression patterns. Overall, L. monocytogenes persistence in the deli environment is likely a matter of poor sanitation and/or facility design, rather than isolates’ biofilm-forming capacity, sanitizer tolerance, or genomic content
Project description:The gut microbiome is significantly altered in inflammatory bowel diseases, but the basis of these changes is not well understood. We have combined metagenomic and metatranscriptomic profiling of the gut microbiome to assess changes to both bacterial community structure and transcriptional activity in a mouse model of colitis. Gene families involved in microbial resistance to oxidative stress, including Dps/ferritin, Fe-dependent peroxidase and glutathione S-transferase, were transcriptionally up-regulated in colitis, implicating a role for increased oxygen tension in gut microbiota modulation. Transcriptional profiling of the host gut tissue and host RNA in the gut lumen revealed a marked increase in the transcription of genes with an activated macrophage and granulocyte signature, suggesting the involvement of these cell types in influencing microbial gene expression. Down-regulation of host glycosylation genes further supports a role for inflammation-driven changes to the gut niche that may impact the microbiome. We propose that members of the bacterial community react to inflammation-associated increased oxygen tension by inducing genes involved in oxidative stress resistance. Furthermore, correlated transcriptional responses between host glycosylation and bacterial glycan utilisation support a role for altered usage of host-derived carbohydrates in colitis. Complementary transcription profiling data from the mouse hosts have also been deposited at ArrayExpress under accession number E-MTAB-3590 ( http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3590/ ).