Project description:We undertook gene expression microarray experiments to identify genes that are differentially expressed in heaves-affected horses versus matched controls. Mediastinal (pulmonary-draining) lymph nodes were sterilely obtained from affected and control horses, dissected, and frozen at -80oC. RNA was extracted from these tissues for downstream applications. These experiments utilized a commercially available Agilent horse array that featured >43,000 probes on a 4x44k array format. Mediastinal lymph node RNA from seven heaves-affected horses was compared to matching RNA from healthy, normal control horses.
Project description:Improper use of antibiotics in swine could reduce commensal bacteria and possibly increase pathogen infections via the gut resistome. This study aimed to compare the metaproteomic profiles of gut resistome and related metabolism in the cecal microbiota of fattening pigs raised under antibiotic-free (ABF) conditions with those of ordinary industrial pigs (CTRL).
2023-10-09 | PXD037218 | JPOST Repository
Project description:Promoter Design for Industrial Applications
Project description:The gut microbiota is an essential contributor to human health and disease and offers an extensive resource of enzymes. Although functional metagenomics methods could predict a correlation between enzyme abundance and functional activity, many enzymes in the microbiome still remain uncharacterized. To discover the differing activities between similar annotated proteins in microbiome, approaches capable of detecting biochemical activity with identification of responsible microbes and enzymes are needed. α-Galactosidases (AGALs) are abundant in the host gut microbiota for hydrolysis of galactooligosaccharides, galactose-containing polysaccharides and glycoconjugates, and have multiple biotechnological applications with increasing demand of global AGAL market, such as food ingredients, animal feed, and biomedical sectors. However, many gut microbial AGALs still lack functional biochemical identification, which limits their usage in industrial and therapeutic applications.
Project description:We undertook gene expression microarray experiments to identify genes that are differentially expressed in heaves-affected horses versus matched controls. Mediastinal (pulmonary-draining) lymph nodes were sterilely obtained from affected and control horses, dissected, and frozen at -80oC. RNA was extracted from these tissues for downstream applications. These experiments utilized a commercially available Agilent horse array that featured >43,000 probes on a 4x44k array format.
Project description:Background: Probiotic-like bacteria treatment has been described to be associated with gut microbiota modifications. Goal: To decipher if the effects of the tested probiotic-like bacteria are due to the bacteria itself or due to the effects of the bacteria on the gut microbiota. Methodology: In this study, gut microbiota has been analyzed from feces samples of subjects with metabolic syndrome and treated with one of the 2 tested probiotic-like bacteria or with the placebo during 3months.
Project description:Dichloromethane (DCM, methylene chloride) is a toxic halogenated volatile organic compound massively used for industrial applications, and consequently often detected in the environment as a major pollutant. DCM biotransformation offers a sustainable decontamination strategy of polluted sites. Among methylotrophic bacteria able to use DCM as sole source of carbon and energy for growth, Methylorubrum extorquens DM4 (formerly named Methyobacterium extorquens) is a longstanding reference Alphaproteobacteria strain. Here, its primary transcriptome was obtained using a differential RNA-seq (dRNA-seq) approach to provide the first transcription start site (TSS) genome-wide landscape of a methylotroph using DCM.
Project description:Opioids such as morphine have many beneficial properties as analgesics, however, opioids may induce multiple adverse gastrointestinal symptoms. We have recently demonstrated that morphine treatment results in significant disruption in gut barrier function leading to increased translocation of gut commensal bacteria. However, it is unclear how opioids modulate the gut homeostasis. By using a mouse model of morphine treatment, we studied effects of morphine treatment on gut microbiome. We characterized phylogenetic profiles of gut microbes, and found a significant shift in the gut microbiome and increase of pathogenic bacteria following morphine treatment when compared to placebo. In the present study, wild type mice (C57BL/6J) were implanted with placebo, morphine pellets subcutaneously. Fecal matter were taken for bacterial 16s rDNA sequencing analysis at day 3 post treatment. A scatter plot based on an unweighted UniFrac distance matrics obtained from the sequences at OTU level with 97% similarity showed a distinct clustering of the community composition between the morphine and placebo treated groups. By using the chao1 index to evaluate alpha diversity (that is diversity within a group) and using unweighted UniFrac distance to evaluate beta diversity (that is diversity between groups, comparing microbial community based on compositional structures), we found that morphine treatment results in a significant decrease in alpha diversity and shift in fecal microbiome at day 3 post treatment compared to placebo treatment. Taxonomical analysis showed that morphine treatment results in a significant increase of potential pathogenic bacteria. Our study shed light on effects of morphine on the gut microbiome, and its role in the gut homeostasis.
Project description:"Omics" technologies have been developed to understand the whole complex microbial systems; however, most omics studies reported so far were utilized to analyze the living matters of “single-species”. To understand the cell-cell interaction in the gut microbial complex, we selected to examine the interaction of Escherichia coli O157:H7 (O157) and Bifidobacterium longum (BL), known as a pathogenic and a commensal bacteria, as a first step for understanding the whole gut microbial complex. We have developed a novel time-lapse 2D-NMR metabolic profiling system in order to measure the extracellular metabolites, which are considered a key factor to understand the bacterial crosstalk. Furthermore, in combination with transcriptome and proteome analysis, we found that the relationship between BL and O157 could be partially regarded as the producer and the consumer of nutrients, especially in the case of serine and aspartate metabolism. These findings suggest that our novel profiling systems could be a powerful tool toward understanding crosstalk of the whole microbial complex such as the gut, industrial bioreactors or environmental microbial communities. In vitro mono and coculture were performed. All experiments were performed in duplicate.