Project description:Trichoderma reesei is the main industrial producer of cellulases and hemicellulases used to depolymerize biomass in many biotechnical applications. Many production strains in use have been generated by classical mutagenesis. In this study we characterized genomic alterations in hyperproducing mutants of T. reesei by high-resolution comparative genomic hybridisation tiling array. We carried out aCGH analysis of four hyperproducing strains (QM9123, QM9414, NG14 and RutC-30) using QM6a genome as a reference. ArrayCGH analysis identified dozens of mutations in each strain analyzed.
Project description:Nickel is an essential component of many eukaryotic and prokaryotic metallo-enzymes. Due to its employment in many industrial applications, wastewaters from industrial plants often contain millimolar concentrations of Ni2+ that are toxic and life-threatening for many organism. Several lines of preliminary evidence suggest that members of the genus Sphingobium are able to grow in the presence of high concentrations of metal ions. We have isolated a novel Sphingobium strain (sp. ba1) able to grow in the presence of high concentrations (up to 20 mM) of NiCl2. Sequencing of its genome allowed the identification of several genes coding for proteins potentially involved in efflux-mediated resistance mechanisms. Here we use the RNA-seq approach to analyze the response of the Sphingobium sp. ba1 strain to high concentrations (10 mM) of Ni ions. Transcriptomic data show the differential expression of about one-hundred and twenty genes, most of which are up-regulated and encode proteins such as membrane proteins and components of metal efflux systems, enzymes involved in oxidative stress responses (catalases, peroxidases) and signal transduction systems.
Project description:Thermal Proteome Profiling (TPP) analysis has been applied to a thermophilic bacterial proteome, recently isolated strain of Geobacillus thermoloverans, ARTW1 and thermal stability of more than 1000 proteins were presented. The thermal proteome was investigated in terms of thermostable enzymes that are relevant to industrial applications.
Project description:The gut microbiota is an essential contributor to human health and disease and offers an extensive resource of enzymes. Although functional metagenomics methods could predict a correlation between enzyme abundance and functional activity, many enzymes in the microbiome still remain uncharacterized. To discover the differing activities between similar annotated proteins in microbiome, approaches capable of detecting biochemical activity with identification of responsible microbes and enzymes are needed. α-Galactosidases (AGALs) are abundant in the host gut microbiota for hydrolysis of galactooligosaccharides, galactose-containing polysaccharides and glycoconjugates, and have multiple biotechnological applications with increasing demand of global AGAL market, such as food ingredients, animal feed, and biomedical sectors. However, many gut microbial AGALs still lack functional biochemical identification, which limits their usage in industrial and therapeutic applications.
Project description:White rot fungi are able to degrade woody lignin and other persistent organic compounds including artificial chemicals (e.g. chlorinated dioxin) in secondary metabolism. This ability has potential in a wide range of biotechnological applications including remediation of organopollutants and the industrial processing of paper and textiles. Ligninolytic fungi secondarily secrete extracellular oxidative enzymes thought to play an important role in these compounds decay. However, detail of metabolic pathway and initiation signals of the degradation system is unclear. To investigate genes directly and indirectly related to it, we constructed long serial analysis of gene expression (Long SAGE) library from the most studied white rot fungus, Phanerochaete chrysosporium. Keywords: transcriptome profiling To analyze the transcriptome profile during the initiation of manganese peroxidase (MnP) and lignin peroxidase (LiP) production in Phanerochaete chrysosporium, we constructed the day 3 culture (just started the enzyme production) library and the day 2 culture (the activity of enzymes is not detected) library.
Project description:White rot fungi are able to degrade woody lignin and other persistent organic compounds including artificial chemicals (e.g. chlorinated dioxin) in secondary metabolism. This ability has potential in a wide range of biotechnological applications including remediation of organopollutants and the industrial processing of paper and textiles. Ligninolytic fungi secondarily secrete extracellular oxidative enzymes thought to play an important role in these compounds decay. However, detail of metabolic pathway and initiation signals of the degradation system is unclear. To investigate genes directly and indirectly related to it, we constructed long serial analysis of gene expression (Long SAGE) library from the most studied white rot fungus, Phanerochaete chrysosporium. Keywords: transcriptome profiling
2007-12-31 | GSE6649 | GEO
Project description:Gut bacteria of cows and horses and their industrial applications