Project description:Male Wistar rats weighing 90-120 g were acclimatized for one week and fed standard laboratory chow, at which time the animals were divided into two groups. Animals were then pair-fed for 8 weeks a regular laboratory chow and water âad libitumâ or Lieber-DeCarli diet (36% calories from ethanol). Control animals received the iso-caloric amount of dextrose to replace ethanol. After 8 weeks of differential feeding rats were euthanized, the pancreas immediately dissected and stored at -80?C until RNA isolation. RNA expression was analyzed using Affymetrix RAE230A gene chips Experiment Overall Design: pancreas from 3 rats feed control diets and 3 rats feed ethanol diets were analyzed
Project description:Divided into four groups,CTL,Salt,(S+B),B.CTL group was fed with normal salt diets for 4 weeks,Salt group were fed with high salt diets(5% NaCl)for 4 weeks,(S+B)group were fed with high salt diets mixed with buckwheat (1:1)for 4 weeks ,B group: first fed high salt diets for 4 weeks and then fed with buckwheat for 4 weeks. Extract mouse gastric flora DNA and sequence.
Project description:Supporting microarray data for manuscript entitled "OSTEOPONTIN AND PAI-1 EXPRESSION IN MALIGNANT HYPERTENSION: SUPPRESSION BY p38 MAPK INHIBITORS" submitted to the HYPERTENSION journal. Experiment Overall Design: Male spontaneously hypertensive stroke-prone rats (SHR-SP) were obtained from Charles River (Raleigh, NC). At 11 weeks of age, the SHR-SP were randomized into 2 groups, and fed either powdered chow diet (Purina 5001) with water ad lib; or a high-salt/high-fat diet consisting of 1% NaCl in the drinking water and 24.5% fat in the chow (from Harlan TekLad, Madison, Wisconsin). 6 replicate animals per diet per time point.
Project description:A series of two color gene expression profiles obtained using Agilent 44K expression microarrays was used to examine sex-dependent and growth hormone-dependent differences in gene expression in rat liver. This series is comprised of pools of RNA prepared from untreated male and female rat liver, hypophysectomized (‘Hypox’) male and female rat liver, and from livers of Hypox male rats treated with either a single injection of growth hormone and then killed 30, 60, or 90 min later, or from livers of Hypox male rats treated with two growth hormone injections spaced 3 or 4 hr apart and killed 30 min after the second injection. The pools were paired to generate the following 6 direct microarray comparisons: 1) untreated male liver vs. untreated female liver; 2) Hypox male liver vs. untreated male liver; 3) Hypox female liver vs. untreated female liver; 4) Hypox male liver vs. Hypox female liver; 5) Hypox male liver + 1 growth hormone injection vs. Hypox male liver; and 6) Hypox male liver + 2 growth hormone injections vs. Hypox male liver. A comparison of untreated male liver and untreated female liver liver gene expression profiles showed that of the genes that showed significant expression differences in at least one of the 6 data sets, 25% were sex-specific. Moreover, sex specificity was lost for 88% of the male-specific genes and 94% of the female-specific genes following hypophysectomy. 25-31% of the sex-specific genes whose expression is altered by hypophysectomy responded to short-term growth hormone treatment in hypox male liver. 18-19% of the sex-specific genes whose expression decreased following hypophysectomy were up-regulated after either one or two growth hormone injections. Finally, growth hormone suppressed 24-36% of the sex-specific genes whose expression was up-regulated following hypophysectomy, indicating that growth hormone acts via both positive and negative regulatory mechanisms to establish and maintain the sex specificity of liver gene expression. For full details, see V. Wauthier and D.J. Waxman, Molecular Endocrinology (2008)
Project description:There are 10 mice in the experiment, named REC. The mice were fed with high salt diets (5% NaCl) for 4 weeks and then fed with normal salt diets for 4 weeks. Then extracted DNA from mice gastric flora to detect changes in the gastric flora of mice.