Project description:An updated representation of S. meliloti metabolism that was manually-curated and encompasses information from 240 literature sources, which includes transposon-sequencing (Tn-seq) data and Phenotype MicroArray data for wild-type and mutant strains.
Project description:The aim of this experiment was to determine if the development of resistance to antibiotics can be driven by the concentration and speciation of Cu. Experimental setup was designed to investigate two hypotheses for which two strains of Gram- bacteria have been selected: - Do TE enhance AR in resistant bacteria? Resistant strain: Bioluminescent Pseudomonas aeruginosa PAO1 (Xen41, Tetracycline resistant) - Do TE induce AR in sensitive bacteria? Sensitive strain: Pseudomonas aeruginosa PAO1 (Wild Type)
Project description:Bacteria isolated from potato scab lesions in Finland or northern Sweden were analyzed using microarrays, PCR, and sequencing. Data indicate wide genetic variability in pathogenicity islands among S.turgidiscabies and S.scabies strains.
Project description:The aim of this experiment was to determine if the development of resistance to antibiotics can be driven by the concentration and speciation of Cu. Experimental setup was designed to investigate two hypotheses for which two strains of Gram- bacteria have been selected: - Do TE enhance AR in resistant bacteria? Resistant strain: Bioluminescent Pseudomonas aeruginosa PAO1 (Xen41, Tetracycline resistant) - Do TE induce AR in sensitive bacteria? Sensitive strain: Pseudomonas aeruginosa PAO1 (Wild Type)
Project description:Helicobacter pylori is a common bacterial infection. It can lead to severe stomach problems, including stomach cancer. Researchers want to look at samples of the bacteria. These H. pylori strains will be taken from chronically infected people. They want to identify the genetic and epigenetic differences in H. pylori strains. This could help predict which people who get infected with the bacteria will get stomach cancer. This could lead to the cancer being detected earlier. It could also mean less people get stomach cancer.
Objectives:
To study genetic variations of H. pylori strains based on samples from chronically infected people. To identify the features of strains that might lead to severe stomach problems or stomach cancer.
Eligibility:
People ages 30-70 years who need an upper endoscopy or who were recently diagnosed with stomach cancer
Design:
Participants will be screened by the doctor who does their procedure and a study nurse.
Participants who have endoscopy will have ~6 biopsies removed. These are tissue samples. They are about the size of a grain of rice. Participants will allow the study team to access reports from their stomach exam.
Participants with stomach cancer will donate some of the tissue that will be removed during their clinical care. They will allow the study team to access reports of their surgery. They will also allow them to access the microscope slides of their stomach.
Project description:In this study we developed metaproteomics based methods for quantifying taxonomic composition of microbiomes (microbial communities). We also compared metaproteomics based quantification to other quantification methods, namely metagenomics and 16S rRNA gene amplicon sequencing. The metagenomic and 16S rRNA data can be found in the European Nucleotide Archive (Study number: PRJEB19901). For the method development and comparison of the methods we analyzed three types of mock communities with all three methods. The communities contain between 28 to 32 species and strains of bacteria, archaea, eukaryotes and bacteriophage. For each community type 4 biological replicate communities were generated. All four replicates were analyzed by 16S rRNA sequencing and metaproteomics. Three replicates of each community type were analyzed with metagenomics. The "C" type communities have same cell/phage particle number for all community members (C1 to C4). The "P" type communities have the same protein content for all community members (P1 to P4). The "U" (UNEVEN) type communities cover a large range of protein amounts and cell numbers (U1 to U4). We also generated proteomic data for four pure cultures to test the specificity of the protein inference method. This data is also included in this submission.
Project description:Experiment conducted to investigate the genetic factors associated with variable and heterogeneous non-planktonic in a mutant lacking rpoN unique to CFT073 bacteria. The aim was to try to understand why RpoN suppresses this heterogeneity in the wild-type during colony growth, but also asses why this phenotype does not occur in other pathogenic strains by also sequencing transcripts from EHEC EDL933. The rpoN mutant strains was complemented with plasmid-borne rpoN containing its native promoter to ensure any differences in gene expression could solely be attributed to the absence of rpoN alone.
Project description:This agent-based model is based on an adaptive laboratory evolution (ALE) experiment scenario of two mutually cross feeding strains of bacteria and yeast. The bacterial strain secretes vitamins for which the yeast strain is auxotrophic and the yeast strain secrets amino acids for which the bacterial strain is auxotrophic. In particular, the model simulates a situation where a mutation arises in the bacterial strain that results in the emergence of individuals (mutant bacteria) with a higher secretion of vitamins as compared to the wild type (WT). This increase in secretion comes with a cost in terms of fitness (growth rate) of the mutant bacteria. The model can be used to assess if this mutant is able to persist and increase in frequency in the cross-feeding community.
Project description:Bacteria belonging to phylum Gemmatimonadetes are found in a wide variety of environments and are particularly abundant in soils. To date, only two Gemmatimonadetes strains have been characterized. Here we report the complete genome sequence and methylation pattern of Gemmatirosa kalamazoonensis KBS708 (ATCC BAA-2150; NCCB 100411), the first characterized Gemmatimondetes strain isolated from soil. Examination of the methylome of Gemmatirosa kalamazoonenis KBS708 using kinetic data from single-molecule, real-time (SMRT) sequencing on the PacBio RS