Project description:The fumarate and nitrate reductase regulator protein, FNR, is a global transcription factor that regulates major biochemical changes as Escherichia coli adapts from aerobic to anaerobic growth. The ability of an fnr mutant to grow anaerobically in the presence of trimethylamine-N-oxide (TMAO) as the terminal electron acceptor was exploited in microarray experiments designed to determine a minimum number of Escherichia coli K-12 MG1655 operons that are regulated directly by FNR. In an anaerobic glycerol-TMAO-fumarate medium, the fnr mutant grew as well as the parental strain, enabling us to reveal the response of the E. coli transcriptome to oxygen, nitrate and nitrite in the absence of glucose repression or artefacts due to variations in growth rate. Many of the discrepancies between previous microarray studies of the E. coli FNR regulon were resolved in this study. First data for 43 previously characterised FNR-dependent operons were analysed. The current microarray data confirmed 32 of these 43 assignments, but alone did not confirm FNR-activation of 5 operons (adhE, glpTQ, cydDC, hlyE and arcA), or FNR repression of 6 operons (hemA, narXL, tpx, yeiL, norVW or ubiCA). Thirty-six operons not previously known to be included in the FNR regulon were activated by FNR and a further 26 operons appeared to be repressed. For each of these operons, an excellent match to the consensus FNR-binding site sequence was identified. The FNR regulon therefore minimally includes at least 94, and possibly as many as 105, operons. Many FNR-activated promoters are also regulated by one or both of two nitrate- and nitrite-responsive two-component regulatory systems, NarX-NarL and NarQ-NarP. Comparison of transcripts in the parental strain and a narXL deletion mutant revealed that transcription of 51 operons is activated, directly or indirectly, by NarL in response to nitrate, and a further 41 are repressed. As phosphorylated NarL can bind to the NarP DNA target sequence, the narP gene was also deleted from the narXL mutant to reveal the extent of regulation by phosphorylated NarP. Fourteen promoters were more active in the narP+ strain than in the mutant, and a further 37 were strongly repressed. This is the first report that NarP might function as a global repressor as well as a transcription activator. The data also revealed possible new biochemical defence mechanisms against reactive nitrogen species. Keywords: genetic modification, growth conditions
Project description:Mapping the occupancy of FNR, HNS, and IHF throughout the genome of Escherchia coli MG1655 K-12 using an affinity purified antibody under anerobic growth conditions. We also mapped the binding of the ß subunit of RNA Polymerase under both aerobic and anaerobic growth conditions. As a control, we also performed ChIP-chip on FNR in a ∆fnr mutant strain of Escherchia coli MG1655 K-12. We also examined FNR immunoprecipitation at various FNR concentrations using IPTG and Ptac::fnr (PK8263). The ∆hns/∆stpA strains were also used. Descirbed in the manuscript Genome-scale Analysis of E. coli FNR Reveals the Complexity of Bacterial Regulon Structure
Project description:The fumarate and nitrate reductase regulator protein, FNR, is a global transcription factor that regulates major biochemical changes as Escherichia coli adapts from aerobic to anaerobic growth. The ability of an fnr mutant to grow anaerobically in the presence of trimethylamine-N-oxide (TMAO) as the terminal electron acceptor was exploited in microarray experiments designed to determine a minimum number of Escherichia coli K-12 MG1655 operons that are regulated directly by FNR. In an anaerobic glycerol-TMAO-fumarate medium, the fnr mutant grew as well as the parental strain, enabling us to reveal the response of the E. coli transcriptome to oxygen, nitrate and nitrite in the absence of glucose repression or artefacts due to variations in growth rate. Many of the discrepancies between previous microarray studies of the E. coli FNR regulon were resolved in this study. First data for 43 previously characterised FNR-dependent operons were analysed. The current microarray data confirmed 32 of these 43 assignments, but alone did not confirm FNR-activation of 5 operons (adhE, glpTQ, cydDC, hlyE and arcA), or FNR repression of 6 operons (hemA, narXL, tpx, yeiL, norVW or ubiCA). Thirty-six operons not previously known to be included in the FNR regulon were activated by FNR and a further 26 operons appeared to be repressed. For each of these operons, an excellent match to the consensus FNR-binding site sequence was identified. The FNR regulon therefore minimally includes at least 94, and possibly as many as 105, operons. Many FNR-activated promoters are also regulated by one or both of two nitrate- and nitrite-responsive two-component regulatory systems, NarX-NarL and NarQ-NarP. Comparison of transcripts in the parental strain and a narXL deletion mutant revealed that transcription of 51 operons is activated, directly or indirectly, by NarL in response to nitrate, and a further 41 are repressed. As phosphorylated NarL can bind to the NarP DNA target sequence, the narP gene was also deleted from the narXL mutant to reveal the extent of regulation by phosphorylated NarP. Fourteen promoters were more active in the narP+ strain than in the mutant, and a further 37 were strongly repressed. This is the first report that NarP might function as a global repressor as well as a transcription activator. The data also revealed possible new biochemical defence mechanisms against reactive nitrogen species. Keywords: genetic modification, growth conditions An fnr mutant is either unable to grow anaerobically in the presence of most terminal electron acceptors and a non-fermentable carbon source such as glycerol or lactate, or grows far more slowly than the parental strain. Under such conditions, any differences in the transcriptomes of an fnr mutant and its parental strain would be due to both direct effects of FNR, and to differences in growth rate. As glucose represses expression from some FNR-activated promoters replacement of glucose by a less repressing fermentable carbohydrate would decrease effects due to glucose repression, but to an unknown extent. We therefore exploited the fact that fnr mutants can be grown anaerobically in the presence of the non-fermentable and non-repressing carbon source, glycerol, in the presence of trimethylamine-N-oxide (TMAO) in addition to fumarate as the terminal electron acceptor. Furthermore, the presence of TMAO has a minimal effect on NarX-NarL or NarQ-NarP-dependent induction or repression. Under these conditions, the fnr mutant grows as well as the parental strain and the use of the glycerol-TMAO-fumarate medium enables us to reveal the response of the E. coli transcriptome to nitrate, nitrite and the two-component regulator system, NarX-NarL. In each large set of experiments a common pool of reference RNA isolated from bacteria that had been grown anaerobically, and in which FNR-activated genes were expressed at a significant level. A potential disadvantage of this approach was the risk that some promoters repressed by FNR would be expressed at such a low level that the microarray signals would be too low to yield reliable data. To check for this artefact, further experiments were completed in which the reference RNA was a pool of samples isolated from bacteria in the early exponential phase of aerobic growth. “Reference” RNA was isolated from at least four independent cultures grown to OD 0.5 to 0.6. “Test” RNA was isolated from three independent cultures grown to OD 0.5 to 0.6.
Project description:The microbiome is an underappreciated contributor to intestinal drug metabolism with broad implications for drug efficacy and toxicity. While considerable progress has been made towards identifying the gut bacterial genes and enzymes involved, the role of environmental factors in shaping their activity remains poorly understood. Here, we focus on the gut bacterial reduction of azo bonds (R-N=N-R’), found in diverse chemicals in both food and drugs. Surprisingly, the canonical azoR gene in Escherichia coli was dispensable for azo bond reduction. Instead, azo reductase activity was controlled by the fumarate and nitrate reduction (fnr) regulator, consistent with a requirement for the anoxic conditions found within the gastrointestinal tract. Paired transcriptomic and proteomic analysis of the fnr regulon revealed that in addition to altering the expression of multiple reductases, FNR is necessary for the metabolism of L-Cysteine to hydrogen sulfide, enabling the degradation of azo bonds. Furthermore, we found that FNR indirectly regulates this process though the small non-coding regulatory RNA fnrS. Taken together, these results show how gut bacteria sense and respond to their intestinal environment to enable the metabolism of chemical groups found in both dietary and pharmaceutical compounds.
Project description:Mapping the occupancy of FNR, HNS, and IHF throughout the genome of Escherchia coli MG1655 K-12 using an affinity purified antibody under anerobic growth conditions. We also mapped the binding of the M-CM-^_ subunit of RNA Polymerase under both aerobic and anaerobic growth conditions. As a control, we also performed ChIP-chip on FNR in a M-bM-^HM-^Ffnr mutant strain of Escherchia coli MG1655 K-12. We also examined FNR immunoprecipitation at various FNR concentrations using IPTG and Ptac::fnr (PK8263). The M-bM-^HM-^Fhns/M-bM-^HM-^FstpA strains were also used. Descirbed in the manuscript Genome-scale Analysis of E. coli FNR Reveals the Complexity of Bacterial Regulon Structure Mapping of occupancy of FNR, NNS, IHF and M-CM-^_ of RNAP in the genome of Escherchia coli MG1655 K-12 under aerobic or anaerobic growth conditions. Immunoprecipitated DNA compared to INPUT for each sample.
Project description:A transcription factor (TF), OmpR, plays a critical role in transcriptional regulation of the defense system for osmotic stress in bacteria. However, its full genome-wide regulatory potential is unknown. Here, we perform a genome-scale reconstruction of the OmpR regulon in Escherichia coli K-12 MG1655. Integrative data analysis reveals that a total of 37 genes in 24 transcription units (TUs) belong to OmpR regulon. Among them, 26 genes show more than two-fold changes in expression level under OmpR knock-out condition. We find that OmpR tends to regulate mostly membrane-located gene products of diverse fundamental biological processes, such as narU, ompX, and nuoN. Investigating co-regulation of entire set of genes regulated by other stress-response TFs unveils that they are surprisingly independently regulated by TF(s) responding to each stress. Additionally, detailed investigation of physiological roles of newly discovered OmpR regulon reveals that activation of narU encoding nitrate/nitrite transporter is a relatively unique strategy of E. coli K-12 MG1655 to significantly improve cellular tolerance toward osmotic stress.
Project description:We found many binding sites for FNR under glucose fermentative anaerobic growth conditions. Also, many binding sites were identified for σ70 under both aerobic and anaerobic growthin conditions. Descirbed in the manuscript "Genome-scale Analysis of E. coli FNR Reveals the Complexity of Bacterial Regulon Structure"
Project description:A transcription factor (TF), OmpR, plays a critical role in transcriptional regulation of the defense system for osmotic stress in bacteria. However, its full genome-wide regulatory potential is unknown. Here, we perform a genome-scale reconstruction of the OmpR regulon in Escherichia coli K-12 MG1655. Integrative data analysis reveals that a total of 37 genes in 24 transcription units (TUs) belong to OmpR regulon. Among them, 26 genes show more than two-fold changes in expression level under OmpR knock-out condition. We find that OmpR tends to regulate mostly membrane-located gene products of diverse fundamental biological processes, such as narU, ompX, and nuoN. Investigating co-regulation of entire set of genes regulated by other stress-response TFs unveils that they are surprisingly independently regulated by TF(s) responding to each stress. Additionally, detailed investigation of physiological roles of newly discovered OmpR regulon reveals that activation of narU encoding nitrate/nitrite transporter is a relatively unique strategy of E. coli K-12 MG1655 to significantly improve cellular tolerance toward osmotic stress.
Project description:Cellular respiration is a fundamental process undergone within energy-transducing membranes through the redox activity of multimeric protein assemblies, so-called respiratory complexes. In most cases, electron transport is ensured by lipophilic molecules, quinones, serving as electron shuttles. This redox activity is coupled to the net translocation of protons across the membrane thereby establishing an electrochemical gradient, the protonmotive force (pmf). Such a gradient powers the transport of molecules (such as proteins, ions or antibiotics) and ATP synthesis but was also shown to participate in protein localization in prokaryotes. Importantly, energy-transducing membranes show a high level of organization with heterogeneous distribution of respiratory complexes as observed across several bacterial lineages. Although electron transport in energy-transducing membranes is considered to be a kinetic process coupled to the diffusion of all reactants and in particular quinones, it is not clear to which extent subcellular distribution of respiratory complexes can have an influence on the overall kinetics. We previously evidenced polar clustering of nitrate reductase, NarGHI, an anaerobic respiratory complex in the gut bacterium Escherichia coli. Such spatial organization was shown to directly impact the electron flux of the associated respiratory chain. While dynamic localization of such complex plays an important role in controlling respiration, the mechanism by which it impacts the electron flux is not understood. Yet, under such conditions where nitrate is the sole terminal electron acceptor, functioning of the electron transport chain in enteric bacteria such as E. coli and Salmonella typhimurium is associated with the production of nitric oxide (NO) mainly resulting from the reduction of nitrite by nitrate reductase. As a consequence, both E. coli and S. typhimurium produce a multitude of enzymes controlling NO homeostasis, the primary source of nitrosative stress. Protein S-nitrosylation is a ubiquitous NO-dependent post-translational modification of cysteine that regulates protein structure and function. Recently, Seth et al demonstrated that, in absence of oxygen, NO oxidation is mainly catalyzed by the hybrid cluster protein Hcp allowing its further reaction with thiols of a broad spectrum of proteins. Among Hcp-dependent S-nitrosylated targets are the nitrate reductase complex, multiple metabolic enzymes and the transcription factor OxyR whose S-nitrosylation entails a distinct nitrosative stress regulon. Optimizing electron transport through clustering of nitrate reductase will lead to nitrite accumulation which may in turn be responsible for NO production. Here, the electron-donating respiratory complex, the formate dehydrogenase, FdnGHI was shown to cluster at the poles under nitrate respiring conditions. Its proximity with the nitrate reductase complex was confirmed by evaluating the interactome of the later under distinct metabolic conditions reported to impact its subcellular organization. All the identified partners were exclusively found when cells were grown under nitrate respiration. The proximity of two respiratory complexes provides mechanistic explanation on the importance of subcellular organization onto quinone pool turnover. Noteworthy is the identification of several components playing key roles in the protection against endogenous nitrosative stress.
Project description:We found many binding sites for FNR under glucose fermentative anaerobic growth conditions. Also, many binding sites were identified for M-OM-^C70 under both aerobic and anaerobic growthin conditions. Descirbed in the manuscript "Genome-scale Analysis of E. coli FNR Reveals the Complexity of Bacterial Regulon Structure" Examination of occupancy of FNR adn M-OM-^C70 under aerobic and anaerobic growth in conditions.