Project description:Two Acinetobacter baumannii strains with low susceptibility to fosmidomycin and two reference with high susceptibility to fosmidomycin were DNA-sequenced to investigate the genomic determinants of fosmidomycin resistance.
Project description:Using Nanopore sequencing, our study has revealed a close correlation between genomic methylation levels and antibiotic resistance rates in Acinetobacter Baumannii. Specifically, the combined genome-wide DNA methylome and transcriptome analysis revealed the first epigenetic-based antibiotic-resistance mechanism in A. baumannii. Our findings suggest that the precise location of methylation sites along the chromosome could provide new diagnostic markers and drug targets to improve the management of multidrug-resistant A. baumannii infections.
Project description:The experiment contains native Tn-seq data for Acinetobacter baumannii strain AB5075 with different genetic alterations. The strain was grown at 37 degrees in LB medium and genomic DNA was isolated. We then used PCR to select for DNA regions containing a junction between ISAba13 and chromosomal DNA. Libraries were then prepared using these DNA fragments.
Project description:In the present work we compare the gene expression profile of A. baumannii and a mutant knock-out strain of A. baumannii lacking a small RNA gene 13573 and the corresponding small RNA 13573 over-producing strain. The main objective is to recognize the main pathways in which the small RNA 13573 is involved. Moreover, the same wild type strain was used to infect mice and was further analyzed after the infection with the aim of finding genes differentially expressed in vivo. Three biological replicates have been performed for each comparison. The RNA collection from Acinetobacter baumannii strain over-expresing the small RNA (sample 13573) was compared with this isolated from A. baumannii harboring the empty vector (PETRA sample) while gene expression in the knock-out strain (KO sample) was compared with the wild type strain Acinetobacter baumannii ATCC 17978 (ATCC sample). The RNA from A.baumannii recovered from the infected animals (INF sample) was compared with the wild type (ATCC).
Project description:The experiment contains 3C-seq data for Acinetobacter baumannii strain AB5075 with different genetic alterations. The strain was grown at 37 degrees in LB medium and nucleoprotein was cross-linked using formaldehyde. Genomic DNA was isolated and digested with NlaIII before being ligated with T4 ligase. Sequencing was then used to identify junctions between ligated DNA sequences.
Project description:Acinetobacter baumannii A1S_1874 gene encodes as a LysR-type transcriptional regulator. LysR family regulators known to regulate biofilm formation, antibiotic resistance, and the expression of diverse genes in other Gram-negative bacteria. However, A1S-1874 has never been characterized in Acinetobacter baumannii, and the studies about the regulon of A1S-1874 are not discovered. In this study we revealed that A1S_1874 differentially regulates at least 302 genes including the csu pilus operon, N-acylhomoserine lactone synthese gene, A1S_0112-A1S_0118 operon, type 1v secretion system related genes that are involved in biofilm formation, surface motility, adherence, quorum sensing and virulence. Overall, our data suggests that A1S-1874 is a key regulator of Acinetobacter baumannii biofilm formation and gene expression.