Project description:Chrysanthemum is a garden plant with good economic benefit and high ornamental value. Chrysanthemum in the key period of flowering in autumn and winter, vulnerable to cold damage, affecting the normal growth of the chrysanthemum plant and even death. little is known regarding the study of histone crotonylation in plant cold response. In this study, we first obtained reference chrysanthemum transcriptome data via RNA sequencing. Next, we quantitatively investigated the chrysanthemum proteome, crotonylation, and the association between them in chrysanthemum following low temperature. In total, 365669 unigenes, 6693 proteins and 2017 crotonylation sites were quantified under low temperature stress. There were 24631 up-regulated and 22648 down-regulated unigenes (absolute log2-fold change > 1 and P value<0.05), 393 up-regulated and 500 down-regulated proteins using a 1.2-fold threshold (P<0.05). The lysine crotonylation mainly influenced in photosynthesis, ribosome, antioxidant enzyme and ROS system. In the process of low temperature, 61 lysine crotonylation sites in 89 proteins were up-regulated and 87 lysine crotonylation sites in 72 proteins are down-regulated (1.2-fold threshold, P<0.05).
Project description:Gene expression analysis of chrysanthemum infected with three different viruses including Cucumber mosaic virus, Tomato spotted wilt virus, and Potato virus X have been performed using the chrysanthemum 135K microarray. Mock and each virus infected chrysanthemum plants were subjected for microarray analysis.
Project description:We report that ethylene enhances the TREE1 binding. We perform ChIP-sequencing of TREE1 using chromatins isolated from 3-day old etiolated pTREE1:TREE1-GFP seedlings treated with ethylene or air gas. Results show that ethylene enhances TREE1 binding in ethylene down regulated genes.
2020-11-04 | GSE122000 | GEO
Project description:Transcriptome of carnation petals treated by ethylene
Project description:Petal senescence is a complex programmed process. It has been previously demonstrated that treatment with ethylene, a plant hormone involved in senescence, can extensively alter transcriptome and proteome profiles in plants. However, little is known regarding the impact of ethylene on post-translational modification (PTM) or the association between PTM and the proteome. Protein degradation is one of the hallmarks of senescence, and ubiquitination, a major PTM in eukaryotes, plays important roles in protein degradation. In this study, we first obtained reference petunia transcriptome data via RNA sequencing. Next, we quantitatively investigated the petunia proteome, ubiquitylome, and the association between them in petunia corollas following ethylene treatment. In total, 51,799 unigenes, 3,606 proteins, and 2,270 ubiquitination sites were quantified 16 hours after ethylene treatment. Treatment with ethylene resulted in 14,448 down-regulated and 6,303 up-regulated unigenes (absolute log2-fold change >1 and FDR<0.001), 284 down-regulated and 233 up-regulated proteins, and 320 up-regulated and 127 down-regulated ubiquitination sites using a 1.5-fold threshold (P<0.05), indicating that global ubiquitination levels increase during ethylene-mediated corolla senescence in petunia. Several putative ubiquitin ligases were up-regulated at the protein and transcription levels. Our results showed that the global proteome and ubiquitylome were negatively correlated and that ubiquitination could be involved in the degradation of proteins during ethylene-mediated corolla senescence in petunias. Ethylene regulates hormone signaling transduction pathways at both the protein and ubiquitination levels in petunia corollas. In addition, our results revealed that ethylene increases the ubiquitination levels of proteins involved in ER-associated degradation (ERAD).
Project description:Petal senescence is a complex programmed process. It has been previously demonstrated that treatment with ethylene, a plant hormone involved in senescence, can extensively alter transcriptome and proteome profiles in plants. However, little is known regarding the impact of ethylene on post-translational modification (PTM) or the association between PTM and the proteome. Protein degradation is one of the hallmarks of senescence, and ubiquitination, a major PTM in eukaryotes, plays important roles in protein degradation. In this study, we first obtained reference petunia transcriptome data via RNA sequencing. Next, we quantitatively investigated the petunia proteome, ubiquitylome, and the association between them in petunia corollas following ethylene treatment. In total, 51,799 unigenes, 3,606 proteins, and 2,270 ubiquitination sites were quantified 16 hours after ethylene treatment. Treatment with ethylene resulted in 14,448 down-regulated and 6,303 up-regulated unigenes (absolute log2-fold change >1 and FDR<0.001), 284 down-regulated and 233 up-regulated proteins, and 320 up-regulated and 127 down-regulated ubiquitination sites using a 1.5-fold threshold (P<0.05), indicating that global ubiquitination levels increase during ethylene-mediated corolla senescence in petunia. Several putative ubiquitin ligases were up-regulated at the protein and transcription levels. Our results showed that the global proteome and ubiquitylome were negatively correlated and that ubiquitination could be involved in the degradation of proteins during ethylene-mediated corolla senescence in petunias. Ethylene regulates hormone signaling transduction pathways at both the protein and ubiquitination levels in petunia corollas. In addition, our results revealed that ethylene increases the ubiquitination levels of proteins involved in ER-associated degradation (ERAD).
Project description:Gene expression analysis of chrysanthemum infected with three different viruses including Cucumber mosaic virus, Tomato spotted wilt virus, and Potato virus X have been performed using the chrysanthemum 135K microarray.
Project description:We report that ethylene reduce the ENAP1 binding. We perform Chip-sequencing of ENAP1 using chromatins isolated from 3-day old etiolated ein3eil1 seedlings treated with ethylene or air gas. Results show that ethylene reduce ENAP1 binding in TSS region of EIN3 targeted genes that are regulated at the transcriptional level by ethylene.