Project description:V6.5 mESCs over-expressing V5-tagged Csrp1 and wild-type mESCs were differentiated into embryoid bodies (EBs) and collected at day 9 for CLIP-seq.
Project description:RNA-seq analysis of wild-type and csrp1KO mESCs and embryoid bodies of day 9, and CLIP-seq of Csrp1 in mouse embryoid bodies of day 9
Project description:Mst1/Mst2 are central components of Hippo pathway. We examined the role of Mst1/Mst2 in ES cell differentiation. In this data set, we include expression data from day 4 and day 8 Mst1/Mst2 knockout ES cell formed embryoid bodies and wild type embryoid body controls.
Project description:Mst1/Mst2 are central components of Hippo pathway. We examined the role of Mst1/Mst2 in ES cell differentiation. In this data set, we include expression data from day 4 and day 8 Mst1/Mst2 knockout ES cell formed embryoid bodies and wild type embryoid body controls. total 4 samples.
Project description:mESCs were in vitro differentiated into embryoid bodies under suspension cultured condition and was collected at day 9 of differentiation. Polyadenylated mRNAs of mESCs and EBs were isolated and used to build the sequencing library.
Project description:Geminin is a small nucleoprotein that neuralizes ectoderm in the Xenopus embryo. Geminin promotes neural fate acquisition of mouse embryonic stem cells: Geminin knockdown during neural fate acquisition decreased expression of neural precursor cell markers (Pax6, Sox1), while increasing expression of Pitx2, Lefty1 and Cited2, genes involved in formation of the mouse node. Here we differentiated mouse embryonic stem cells into embryoid bodies to study Geminin's ability to repress primitive streak mesendoderm fate acquisition. We used microarrays to define the sets of genes that are regulated by Geminin during cell fate acquisition in embryoid bodies, using Dox-inducible Geminin knockdown or overexpression mouse embryonic stem cell lines. ES cell lines for Geminin over-expression (GemOE) were treated without or with Dox from day 3 to day 5 of EB differentiation and were collected on days 4 or 5 for microarray analysis. Gem knockdown (KD) ES cell lines were treated without or with Dox from day 0 to day 4 of EB differentiation and were collected on day 4 for microarray analysis.
Project description:Geminin is a small nucleoprotein that neuralizes ectoderm in the Xenopus embryo. Geminin promotes neural fate acquisition of mouse embryonic stem cells: Geminin knockdown during neural fate acquisition decreased expression of neural precursor cell markers (Pax6, Sox1), while increasing expression of Pitx2, Lefty1 and Cited2, genes involved in formation of the mouse node. Here we differentiated mouse embryonic stem cells into embryoid bodies to study Geminin's ability to repress primitive streak mesendoderm fate acquisition. We used microarrays to define the sets of genes that are regulated by Geminin during cell fate acquisition in embryoid bodies, using Dox-inducible Geminin knockdown or overexpression mouse embryonic stem cell lines.