Project description:Study of differences in gene expression profiles in the mammary glands tumours of PEA3-null and wild-type PEA3 mice induced by the Her2/Neu transgene. Keywords: other
Project description:Study of differences in gene expression profiles in the mammary glands tumours of PEA3-null and wild-type PEA3 mice induced by the Her2/Neu transgene. Experiment Overall Design: this experiment include 3 samples and 22 replicates
Project description:Stat1-null mice (129S6/SvEvTac-Stat1tm1Rds homozygous) uniquely develop estrogen-receptor-positive mammary tumors with incomplete penetrance and long latency. We studied the growth and development of the mammary glands in Stat1-null mice. Stat1-null MGs have faulty branching morphogenesis with abnormal terminal end buds. The Stat1-null MG also fails to sustain growth of 129S6/SvEv wild-type and null epithelium. These abnormalities are partially reversed by added progesterone and prolactin. Transplantation of wild-type bone-marrow into Stat1-null mice does not reverse the mammary gland developmental defects. Media conditioned by Stat1-null epithelium-cleared mammary fat pads does not stimulate epithelial proliferation whereas it is stimulated by conditioned media derived from either wild-type or progesterone and prolactin-treated Stat1-null epithelium-cleared mammary fat pads. Microarrays and multiplex cytokine protein assays showed that the mammary gland of Stat1-null mice had lower levels of growth factors that have been implicated in normal mammary gland growth and development. Transplanted Stat1-null tumors and their isolated cells also grow slower in Stat1-null mammary gland compared to wild-type recipient mammary gland. Stat1-null hosts responded to tumor transplants with granulocytic infiltrates while wild-type hosts show a mononuclear response. These studies demonstrate that growth of normal and neoplastic Stat1-null epithelium primarily depends on the hormonal milieu and factors, such as cytokines, from the mammary stroma.
Project description:Stat1-null mice (129S6/SvEvTac-Stat1tm1Rds homozygous) uniquely develop estrogen-receptor-positive mammary tumors with incomplete penetrance and long latency. We studied the growth and development of the mammary glands in Stat1-null mice. Stat1-null MGs have faulty branching morphogenesis with abnormal terminal end buds. The Stat1-null MG also fails to sustain growth of 129S6/SvEv wild-type and null epithelium. These abnormalities are partially reversed by added progesterone and prolactin. Transplantation of wild-type bone-marrow into Stat1-null mice does not reverse the mammary gland developmental defects. Media conditioned by Stat1-null epithelium-cleared mammary fat pads does not stimulate epithelial proliferation whereas it is stimulated by conditioned media derived from either wild-type or progesterone and prolactin-treated Stat1-null epithelium-cleared mammary fat pads. Microarrays and multiplex cytokine protein assays showed that the mammary gland of Stat1-null mice had lower levels of growth factors that have been implicated in normal mammary gland growth and development. Transplanted Stat1-null tumors and their isolated cells also grow slower in Stat1-null mammary gland compared to wild-type recipient mammary gland. Stat1-null hosts responded to tumor transplants with granulocytic infiltrates while wild-type hosts show a mononuclear response. These studies demonstrate that growth of normal and neoplastic Stat1-null epithelium primarily depends on the hormonal milieu and factors, such as cytokines, from the mammary stroma. Stat1-null mammary glands were compared to 129SvEv WT mammary glands with respect to development, gene expression profiles, growth factors and histology.
Project description:The present experiments were performed to determine the roles of estrogen receptors α and β (ERα and ERβ) in normal and neoplastic development in the mouse mammary gland. In wild-type mice, in vivo administration of estradiol (E) + progesterone (P) stimulated mammary ductal growth and alveolar differentiation. Mammary glands from mice in which the ERβ gene has been deleted (βERKO mice) demonstrated normal ductal growth and differentiation in response to E + P. By contrast, mammary glands from mice in which the ERα gene has been deleted (αERKO mice) demonstrated only rudimentary ductal structures that did not differentiate in response to E + P. EGF demonstrates estrogen-like activity in the mammary glands of αERKO mice: treatment of αERKO mice with EGF + P (without E) supported normal mammary gland development, induced expression of progesterone receptor (PR), and increased levels of G- protein-coupled receptor (GPR30) protein. Mammary gland development in βERKO mice treated with EGF + P was comparable to that of wild-type mice receiving EGF + P; EGF had no statistically significant effects on the induction of PR or expression of GPR30 in mammary glands harvested from either wild-type mice or βERKO mice. In vitro exposure of mammary glands to 7,12-dimethylbenz[a]anthracene (DMBA) induced preneoplastic mammary alveolar lesions (MAL) in glands from wild-type mice and βERKO mice, but failed to induce MAL in mammary glands from αERKO mice. Microarray analysis of DMBA-treated mammary glands identified 28 functional pathways whose expression was significantly different in αERKO mice versus both βERKO and wild-type mice; key functions that were differentially expressed in αERKO mice included cell division, cell proliferation, and apoptosis. The data demonstrate distinct roles for ERα and ERβ in normal and neoplastic development in the mouse mammary gland, and suggest that EGF can mimic the ERα-mediated effects of E in this organ.
Project description:The purpose of this study was to determine the pathogenic changes that occur in myoepithelial cells (MECs) from lacrimal glands of a mouse model of Sjogren’s syndrome. MECs were cultured from lacrimal glands of C57BL/6J (wild type, WT), and thrombospondin 1 knockout null (TSP1 -/- ) mice. We used microarray to analyzed the differential expression of genes in cultured MECs of TSP1-/- and wild type (WT) mice.
Project description:Akt1, a serine-threonine protein kinase member of the PKB/Akt gene family, plays a critical role in the regulation of several cellular processes including cell proliferation and apoptosis. In this study, we utilized Akt1+/+ and Akt1¬-/- C57/Bl6 female mice to demonstrate that Akt1 is required for normal mammary gland postnatal development and homeostasis. Akt1 deficiency resulted in severely delayed postnatal mammary gland growth as well as a significant decrease in the number of terminal end buds during puberty. Adult Akt1-/- mammary glands exhibited significantly fewer alveolar buds coupled with a significant increase in epithelial cell apoptosis compared to their wild-type counterparts. Microarray analysis revealed that Akt1 deficiency resulted in several altered gene expression changes and biological processes in adult mammary glands, including organismal development, cell death, and tissue morphology. Of particular importance, a significant decrease in expression of Btn1a1, a gene involved in milk lipid secretion, was observed in Akt1-/- mammary glands by both microarray and RT-PCR validation. Transcriptome analysis of Akt1 wild type and akt1-homozygous mouse mammary glands wild type mammary glands from 3 mice and Akt1-deficient mammary glands from 3 mice were analyzed for differences in gene expression at postnatal day 70
Project description:These experiments aim determine the effects of Pten signaling in fibroblasts on gene expression in other cell compartments in the mammary gland. To achieve this, we used a genetic model in which the tumor suppressor gene Pten was specifically inactivated in stromal fibroblats. We then isolated fibroblasts, epithelial cells and endothelial cells from the mammary glands of mice with either wild type or Pten null fibroblasts. Comparisons were made between wild type and Pten counterparts, not between the various cell types.