Project description:E11.5 metanephric mesenchyme and ureteric bud were dissected from the E11.5 kidney rudiment using fine manual microdissection (ureteric bud only) or both fine manual microdissection and laser capture microdissection (metanephric mesenchyme) to define the gene expression profiles of these structures. Additionally, HoxA11, HoxD11 compound null E11.5 metanephric mesenchyme was obtained through laser capture microdissection allowing analysis of possible Hox targets in kidney development. Targets from multiple biological replicates of each were generated and the expression profiles were determined using Affymetrix MOE430_v2 arrays. Keywords: embryonic metanephric kidney, kidney development, Hoxa11, Hoxd11, compound null targeted mice
Project description:Complete (whole) embryonic kidneys were dissected from wild type and Hoxa11, Hoxd11 compound null embryons throughout development. Targets from two biological replicates of each were generated and the expression profiles were determined using Affymetrix MOE430A and MOE430B arrays. Comparisons between normal and mutant and comparisons of development samples identified global patterns of gene regulation in kidney development Keywords: embryonic metanephric kidney, kidney development, Hoxa11, Hoxd11, compound null targeted mice
Project description:E11.5 metanephric mesenchyme and ureteric bud were dissected from the E11.5 kidney rudiment using fine manual microdissection (ureteric bud only) or both fine manual microdissection and laser capture microdissection (metanephric mesenchyme) to define the gene expression profiles of these structures. Additionally, HoxA11, HoxD11 compound null E11.5 metanephric mesenchyme was obtained through laser capture microdissection allowing analysis of possible Hox targets in kidney development. Targets from multiple biological replicates of each were generated and the expression profiles were determined using Affymetrix MOE430_v2 arrays. Using microdissection techniques, ureteric bud and metanephric mesenchyme were dissected from E11.5 kidney rudiments allowing the identificated genes specifically regulated in either structure. In addition, Hoxa11, Hoxd11 compound null E11.5 metanephric mesenchyme were normalized to wild type embryonic controls allowing the identification of potential Hox targets in normal kidney development. Each structure/genotype were represented in biological (seperate embryo) replicate.
Project description:Complete (whole) embryonic kidneys were dissected from wild type and Hoxa11, Hoxd11 compound null embryos throughout development. Targets from two biological replicates of each were generated and the expression profiles were determined using Affymetrix MOE430A and MOE430B arrays. Comparisons between normal and mutant and comparisons of development samples identified global patterns of gene regulation in kidney development Experiment Overall Design: Embryonic metanephric kidney samples throughout development were analyzed based on normalization to adult kidney samples. In addition, Hoxa11, Hoxd11 compound null embronic kidneys were normalized to wild type embryonic controls. All developmental and adult stages were represented in biological (seperate embryo/animal replicate).<br><br>Normalized data files were not included because there appears to be a mismatch between the composite sequence identifiers in some of them and the array design selected.
Project description:Adar1 is an essential gene for mouse embryonic development. Adar1 null mouse embryos dies around E11.5 because of massive apoptosis. Small RNA: 4 samples examined: wild type E11.0, ADAR1 null E11.0, wild type E11.5, ADAR1 null E11.5, mRNA-seq: wild type E11.5, ADAR1 null E11.5.
Project description:We used micro-dissection with FACS sorting techniques to isolate single cells from the metanephric mesenchyme of the E11.5 developing kidney. A subset of these single cell populations is analysed individually via Fluidigm single cell analysis. This analysis will determine the transcriptional profile of each cell type, identify compartment specific transcripts, compartment specific transcript isoforms and cell-type specific long-noncoding RNAs. In addition the unbiased nature of RNA-SEQ will potentially identify novel transcripts that have not been annotated in the database. Kidneys are harvested from Tg(Crym-EGFP)GF82Gsat mice. Single cells are extracted from E11.5 metanephric mesenchyme using manual micro-dissection techniques. A subset of these cells is analyzed individually via Fluidigm single cell analysis. The long term goal is to generate a transcriptional atlas of the developing kidney.
Project description:We used micro-dissection with FACS sorting techniques to isolate single cells from the metanephric mesenchyme of the Embryonic day 11.5 (E11.5) developing kidney. A subset of these single cell populations is analysed individually via Fluidigm single cell analysis. This analysis will determine the transcriptional profile of each cell type, identify compartment specific transcripts, compartment specific transcript isoforms and cell-type specific long-noncoding RNAs. In addition the unbiased nature of RNA-SEQ will potentially identify novel transcripts that have not been annotated in the database.
Project description:Targeted deletion of skNAC in mice resulted in early embryonic lethality with cardiac defects. In order to investigate the molecular mechanism of the cardiac defect, we designed the microarray comparing gene expression of the mutant E11.5 heart to wild type E11.5 heart. Keywords: genetic modification in mouse
Project description:The long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing kidney. The central thesis is straightforward. The combination of fluorescent activated cell sorting (FACS) plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing kidney. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene in FACS isolated components of the developing kidney. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone. YFP & GFP transgenic lines have been used to isolate several cell types including the metanephric mesenchyme, Juxtaglomerular Complex cells or renal cortex from the kidneys of either E11.5 embryos or adult mice. The various cell types were isolated from the kidney using microdissection and single-cell isolation techniques. RNA was isolated from cells and the gene expression profiles were determined by microarrays.