Project description:In this study, we examined the transcriptome of Leishmania donovani promastigotes and axenic amastigotes to identify differentially regulated mRNAs utilizing the serial analysis of gene expression Keywords: stage differentiation; axenic amastigotes
Project description:Protozoa of the genus Leishmania are the causative agents of leishmaniasis in humans. These parasites cycle between promastigotes in the sand fly mid-gut and amastigotes in phagolysosome of mammalian macrophages. During infection, host up-regulate nitric oxide synthase and parasite induce host arginase expression, both of which use arginine as a substrate. These elevated activities deplete macrophage arginine pools, a situation that invading Leishmania must overcome since it is an essential amino acid. Leishmania donovani imports exogenous arginine via a mono-specific amino acid transporter (AAP3) and utilizes it primarily through the polyamine pathway to provide precursors for trypanothione biosynthesis. Here we report the discovery of a pathway whereby promastigote and amastigote forms of the Leishmania sense the lack of environmental arginine and respond with rapid up-regulation in AAP3 expression and activity, as well as several other transporters. Significantly, this arginine deprivation response is also activated in parasites during macrophage infection. Phosphoproteomic analyses of L. donovani promastigotes have implicated a Mitogen-Activated Protein Kinase 2 (MPK2)-mediated signaling cascade in this response and L. mexicana mutants lacking MPK2 are unable to respond to arginine deprivation. In this study, we established that Leishmania cells sense the absence of arginine in their environment; both in culture (axenic promastigotes and amastigotes) and in macrophages during infection (amastigotes). This study describes the first amino acid deprivation sensing mechanism and the pathway that transduce this response, and reveals a novel host-pathogen metabolic interplay. Total RNA from Ten Leishmania donovani samples were analyzed using RNA-Seq. Cells from two life stages (promastigotes and amastigotes) were grown in axenic culture in the presence and absense of arginine. For each condition two biological replicates were grown and analyzed. In addition two macrophage grown amastigotes were analyzed.
Project description:Murine bone marrow derived macrophages were infected with Leishmania major or Leishmania donovania promastigotes, allowed to phagocytose latex beads or not treated. Gene expression profiles were compared to identify i) the effect of Leishmania infection; ii) the differences in effects between L. major and L. donovani; and iii) the effect of pahgocytosis of latex beads.
Project description:Protozoa of the genus Leishmania are the causative agents of leishmaniasis in humans. These parasites cycle between promastigotes in the sand fly mid-gut and amastigotes in phagolysosome of mammalian macrophages. During infection, host up-regulate nitric oxide synthase and parasite induce host arginase expression, both of which use arginine as a substrate. These elevated activities deplete macrophage arginine pools, a situation that invading Leishmania must overcome since it is an essential amino acid. Leishmania donovani imports exogenous arginine via a mono-specific amino acid transporter (AAP3) and utilizes it primarily through the polyamine pathway to provide precursors for trypanothione biosynthesis. Here we report the discovery of a pathway whereby promastigote and amastigote forms of the Leishmania sense the lack of environmental arginine and respond with rapid up-regulation in AAP3 expression and activity, as well as several other transporters. Significantly, this arginine deprivation response is also activated in parasites during macrophage infection. Phosphoproteomic analyses of L. donovani promastigotes have implicated a Mitogen-Activated Protein Kinase 2 (MPK2)-mediated signaling cascade in this response and L. mexicana mutants lacking MPK2 are unable to respond to arginine deprivation. In this study, we established that Leishmania cells sense the absence of arginine in their environment; both in culture (axenic promastigotes and amastigotes) and in macrophages during infection (amastigotes). This study describes the first amino acid deprivation sensing mechanism and the pathway that transduce this response, and reveals a novel host-pathogen metabolic interplay.
Project description:Histone acetylations are known to impact gene transcription. Here, we have attempted to examine the role of Leishmania donovani histone acetyltransferase HAT4 in regulating global gene expression. The transcriptome of HAT4-null promastigotes (Samples 2A, 2B) have been compared with the transcriptome of wild-type Leishmania promastigotes (Samples 1A, 1B) and fold change in gene expression with respect to the control wild-type has been determined. DNA microarray analysis was carried out with biological replicates, using RNA isolated from logarithmically growing promastigotes in two separate experiments. Bioanalyzer profiles of the isolated RNA samples were used to assess purity and integrity of the isolated RNA. Sample 1A and sample 1B are analyses carried out using RNA isolated from wild-type Leishmania donovani promastigotes. Sample 2A and sample 2B are analyses carried out using RNA isolated from HAT4-null promastigotes.
Project description:We examined the Leishmania mexicana transcriptome to identify differentially regulated mRNAs using high-density whole-genome oligonucleotide microarrays designed from the genome data of a closely related species, Leishmania major. Statistical analysis on array hybridization data representing 8156 predicted coding regions revealed 288 genes (3.5% of all genes) whose steady-state mRNA levels meet criteria for differential regulation between promastigotes and lesion-derived amastigotes. Interestingly, sample comparison of promastigotes to axenic amastigotes resulted in only 17 genes (0.2%) that meet the same statistical criteria for differential regulation. The reduced number of regulated genes is a consequence of an increase in the magnitude of the transcript levels in cells under axenic conditions. The expression data for a subset of genes was validated by quantitative PCR. Our studies show that interspecies hybridization on microarrays can be used to analyze closely related protozoan parasites, that axenic culture conditions may alter amastigote transcript abundance, and that there is only a relatively modest change in abundance of a few mRNAs between morphologically distinct promastigote and amastigote cultured cells. Leishmania may represent an alternative paradigm for eukaryotic differentiation with minimal contributions from changes in mRNA abundance. Keywords: RNA expression profiling
Project description:Abstract Protozoa of the genus Leishmania are the causative agents of leishmaniasis in humans. These parasites cycle between promastigotes in the sand fly mid-gut and amastigotes in phagolysosome of mammalian macrophages. During infection, they up-regulate host nitric oxide synthase and arginase expression, both of which use arginine as a substrate. These elevated activities deplete macrophage arginine pools, a situation that invading Leishmania must overcome since it is an essential amino acid. Leishmania donovani imports exogenous arginine via a mono-specific amino acid transporter (AAP3) and utilizes it primarily through the polyamine pathway to provide precursors for trypanothione biosynthesis. Here we report the discovery of a pathway whereby promastigote and amastigote forms of the Leishmania sense the lack of environmental arginine and respond with rapid up-regulation in AAP3 expression and activity, as well as several other transporters. Significantly, this arginine deprivation response is also activated in parasites during macrophage infection. Phosphoproteomic analyses of L. donovani promastigotes have implicated a mitogen activated protein kinase 2 (MPK2)-mediated signaling cascade in this response and L. mexicana mutants lacking MPK2 are unable to respond to arginine deprivation. In addition, these mutants cannot differentiate into amastigotes in axenic culture or in peritoneal macrophages, and fail to establish an infection in mice. We propose that sensing arginine levels plays a critical role in Leishmania virulence by activating a rapid metabolic reaction for salvaging this amino acid in response to the lower arginine concentration in the macrophage phagolysosome.
Project description:Abstract Protozoa of the genus Leishmania are the causative agents of leishmaniasis in humans. These parasites cycle between promastigotes in the sand fly mid-gut and amastigotes in phagolysosome of mammalian macrophages. During infection, they up-regulate host nitric oxide synthase and arginase expression, both of which use arginine as a substrate. These elevated activities deplete macrophage arginine pools, a situation that invading Leishmania must overcome since it is an essential amino acid. Leishmania donovani imports exogenous arginine via a mono-specific amino acid transporter (AAP3) and utilizes it primarily through the polyamine pathway to provide precursors for trypanothione biosynthesis. Here we report the discovery of a pathway whereby promastigote and amastigote forms of the Leishmania sense the lack of environmental arginine and respond with rapid up-regulation in AAP3 expression and activity, as well as several other transporters. Significantly, this arginine deprivation response is also activated in parasites during macrophage infection. Phosphoproteomic analyses of L. donovani promastigotes have implicated a mitogen activated protein kinase 2 (MPK2)-mediated signaling cascade in this response and L. mexicana mutants lacking MPK2 are unable to respond to arginine deprivation. In addition, these mutants cannot differentiate into amastigotes in axenic culture or in peritoneal macrophages, and fail to establish an infection in mice. We propose that sensing arginine levels plays a critical role in Leishmania virulence by activating a rapid metabolic reaction for salvaging this amino acid in response to the lower arginine concentration in the macrophage phagolysosome.
Project description:Histone acetylations are known to impact gene transcription. Here, we have attempted to examine the role of Leishmania donovani histone acetyltransferases HAT4 and HAT2 in regulating global gene expression. The transcriptome of HAT4-null promastigotes (Samples 2A, 2B) and HAT2-heterozygous knockout promastigotes (Samples 3A, 3B) have been compared with the transcriptome of wild-type Leishmania promastigotes (Samples 1A, 1B) and fold change in gene expression with respect to the control wild-type has been determined.