Project description:Insulin-stimulated muscle glucose uptake is a key process to alleviate hyperglycemia. This process depends on the redistribution of glucose transporters to the muscle surface membrane following phosphorylation of TBC1D1 and TBC1D4. Genetic evidence from a TBC1D4 loss-of-function mutation in human skeletal muscle is associated with an increased risk of type 2 diabetes (T2D). However, little is known about the potential regulating interactors of TBC1D4 in skeletal muscle. Here, we sought to identify interactors of TBC1D4 in human skeletal muscle by an unbiased proteomics approach. We detected 76 proteins as candidate TBC1D4 interactors, whereof 12 were regulated by insulin stimulation including known proteins involved in glucose metabolism (e.g. 14-3-3 proteins and ACTN4). TBC1D1 also co-precipitated with TBC1D4 and vice versa in both human and mouse skeletal muscle. This interaction was not regulated by insulin or exercise in young healthy lean individuals. In contrast, we observed an altered interaction as well as compromised insulin-stimulated phospho-regulation of the TBC1D1-TBC1D4 complex in muscle of obese individuals with T2D. In conclusion, we provide a list of TBC1D4 interactors in human and mouse skeletal muscle. These protein interactors serve as potential regulators of TBC1D4 function and thus insulin-stimulated glucose uptake in skeletal muscle.
Project description:Type 2 diabetes is one of the most prevalent metabolic disorders. It is characterised by insulin resistance in peripheral tissues. Skeletal muscle is one of the tissues that affect by insulin resistance. Therefore, the study aims to identify differentially regulated genes in skeletal muscle of type 2 diabetes patients. Here, we obtained biopsies from the pectoralis major muscle and performed RNA sequencing to profile the gene expression patterns from four patients with diabetes and three healthy controls.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:Over 40 % of microRNAs are located in introns of coding genes, and many intronic microRNAs are co-regulated with their host genes. In such cases of co-regulation, the products of host genes and their intronic microRNAs can cooperate to coordinately regulate biologically important pathways. Therefore, we screened intronic microRNAs dysregulated in liver of obese mouse models to identify previously uncharacterized coding host genes that may contribute to the pathogenesis of obesity-associated insulin resistance and type 2 diabetes mellitus. Our approach identified that expression of both Ectodysplasin A (Eda), the causal gene of X-linked hypohidrotic ectodermal dysplasia (XLHED; MIM 305100) and its intronic microRNA, miR-676, was strongly increased in liver of obese mouse models. Moreover, hepatic EDA expression is increased in obese human subjects, reduced upon weight loss, and its hepatic expression correlates with systemic insulin resistance. Eda expression in murine liver is controlled via PPARg activation, increases in circulation and promotes JNK activation and inhibitory serine phosphorylation of IRS1 in skeletal muscle. Consistently, bi-directional modulation of hepatic Eda expression in mouse models affects systemic glucose metabolism with alterations of muscle insulin signaling, revealing a novel role of EDA as an obesity-associated hepatokine, which impairs insulin sensitivity in skeletal muscle.
Project description:The targeted muscle insulin receptor knockout (MIRKO) model was used, in which there is a complete absence of the insulin-receptor signaling in skeletal muscle but normal insulin and glucose levels. By comparing skeletal muscle gene-expression profiles from MIRKO mice and their controls (lox/lox) under three different metabolic conditions (namely, in the basal state, after streptozotocin (STZ)-induced diabetes, and after STZ-induced diabetes rendered euglycemic with insulin treatment), we can address the following three important questions. (i) What is the direct effect of the loss of insulin signaling on gene expression in skeletal muscle? (ii) What is the contribution of the metabolic and other changes that accompany diabetes to induce indirect changes in gene expression? (iii) How are these pathways regulated and implicated in the pathophysiology of diabetes?
Project description:Insulin action in target tissues involved precise regulation of gene expression. To define the set of insulin-regulated genes in human skeletal muscle, we analyzed the global changes in mRNA levels during a 3-h hyperinsulinemic euglycemic clamp in vastus lateralis muscle of six healthy subjects. Using 29,308 cDNA element microarrays, we found that the mRNA expression of 762 genes, including 353 expressed sequence tags, was significantly modified during insulin infusion. 478 were up-regulated and 284 down-regulated. Most of the genes with known function are novel targets of insulin. They are involved in the transcriptional and translational regulation (29%), intermediary and energy metabolisms (14%), intracellular signaling (12%), and cytoskeleton and vesicle traffic (9%). Other categories consisted of genes coding for receptors, carriers, and transporters (8%), components of the ubiquitin/proteasome pathways (7%) and elements of the immune response (5.5%). These results thus define a transcriptional signature of insulin action in human skeletal muscle. They will help to better define the mechanisms involved in the reduction of insulin effectiveness in pathologies such as type 2 diabetes mellitus, a disease characterized by defective regulation of gene expression in response to insulin. An all pairs experiment design type is where all labeled extracts are compared to every other labeled extract. Using regression correlation
Project description:We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3’ and/or 5’ end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5’ differences and in support of this we report that a 5’ isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5’ isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes