Project description:Insulin resistance, the defective regulation of glucose metabolism by insulin, increases the risk of type 2 diabetes and cardiovascular disease. It is not yet known how insulin resistance remodels signalling networks in human tissues. Here, we define the signalling architecture of insulin resistance in skeletal muscle. We measured phenotypes and phosphoproteomes of insulin resistant and insulin sensitive subjects as they responded to exercise and an insulin infusion, quantifying more than 26,000 phosphosites in 114 skeletal muscle biopsies. Incorporating a temporal component to personalised phosphoproteomics identified signalling linked with the range of insulin sensitivity across the participants.
Project description:To identify insulin responsive genes in humans, in the first protocol, skeletal muscle biopsies from six non-diabetic subjects were obtained before and after a two-hour of hyperinsulinaemic (infusion rate 40 mU/m2/min) euglycemic clamp. A variable infusion of glucose (180 g/l) enriched with tritiated glucose (100 μCi/500 ml) maintained euglycemia during insulin infusion, with monitoring of plasma glucose concentration every 5 to 10 min during the basal and clamp periods using an automated glucose oxidation method (Glucose Analyzer 2, Beckman Instruments, Fullerton, CA). In the second protocol, skeletal muscle biopsies from six non-diabetic subjects were obtained before and after a 3-hour hyperinsulinemic (infusion rate 40 mU/m2/min) euglycemic clamp in order to increase the effects of insulin on gene expression. A variable infusion of glucose (180 g/l) was used to maintain euglycemia during insulin infusion with monitoring of plasma glucose concentration every 5 to 10 min using an automated glucose oxidation method (Glucose Analyzer 2, Beckman Instruments, Fullerton, CA). Keywords: dose response The muscle biopsies were obtained from the vastus lateralis muscle under local anesthesia before and after hyperinsulinaemic (infusion rate 40 mU/m2/min) euglycemic clamp
Project description:To identify insulin responsive genes in humans, in the first protocol, skeletal muscle biopsies from six non-diabetic subjects were obtained before and after a two-hour of hyperinsulinaemic (infusion rate 40 mU/m2/min) euglycemic clamp. A variable infusion of glucose (180 g/l) enriched with tritiated glucose (100 μCi/500 ml) maintained euglycemia during insulin infusion, with monitoring of plasma glucose concentration every 5 to 10 min during the basal and clamp periods using an automated glucose oxidation method (Glucose Analyzer 2, Beckman Instruments, Fullerton, CA). In the second protocol, skeletal muscle biopsies from six non-diabetic subjects were obtained before and after a 3-hour hyperinsulinemic (infusion rate 40 mU/m2/min) euglycemic clamp in order to increase the effects of insulin on gene expression. A variable infusion of glucose (180 g/l) was used to maintain euglycemia during insulin infusion with monitoring of plasma glucose concentration every 5 to 10 min using an automated glucose oxidation method (Glucose Analyzer 2, Beckman Instruments, Fullerton, CA). Keywords: dose response
Project description:Skeletal muscle has been identified as a secretory organ. We hypothesized that IL-6, a cytokine secreted from skeletal muscle during exercise, could induce production of other secreted factors in skeletal muscle. Keywords: Human skeletal muscle time course response to IL-6 infusion
Project description:Insulin action in target tissues involved precise regulation of gene expression. To define the set of insulin-regulated genes in human skeletal muscle, we analyzed the global changes in mRNA levels during a 3-h hyperinsulinemic euglycemic clamp in vastus lateralis muscle of six healthy subjects. Using 29,308 cDNA element microarrays, we found that the mRNA expression of 762 genes, including 353 expressed sequence tags, was significantly modified during insulin infusion. 478 were up-regulated and 284 down-regulated. Most of the genes with known function are novel targets of insulin. They are involved in the transcriptional and translational regulation (29%), intermediary and energy metabolisms (14%), intracellular signaling (12%), and cytoskeleton and vesicle traffic (9%). Other categories consisted of genes coding for receptors, carriers, and transporters (8%), components of the ubiquitin/proteasome pathways (7%) and elements of the immune response (5.5%). These results thus define a transcriptional signature of insulin action in human skeletal muscle. They will help to better define the mechanisms involved in the reduction of insulin effectiveness in pathologies such as type 2 diabetes mellitus, a disease characterized by defective regulation of gene expression in response to insulin. An all pairs experiment design type is where all labeled extracts are compared to every other labeled extract. Using regression correlation