Project description:NAT10-catalyzed N4-acetylcytidine (ac4C) has emerged as a vital post-transcriptional modulator on the coding transcriptome by promoting mRNA stability. To explore the transcriptome-wide profile of ac4C modification, we mapped the locations of ac4C modification on wild-type (WT) hESCs and NAT10 KD hESCs by NaCNBH3-based chemical ac4C sequencing (ac4C-seq).
Project description:NAT10-catalyzed N4-acetylcytidine (ac4C) has emerged as a vital post-transcriptional modulator on the coding transcriptome by promoting mRNA stability. To explore the transcriptome-wide profile of ac4C modification, we mapped the locations of ac4C modification on wild-type (WT) hESCs and NAT10 KD hESCs by high-throughput ac4C RNA immunoprecipitation sequencing (ac4C-RIP-seq).
Project description:We performedacRIP-seq between control CRC cells and CRC cells with NAT10 knockdown to identify NAT10 mediates mRNA ac4C modification
Project description:As a newly identified mRNA modification, the regulation of ac4C remains largely unexplored. RNA-binding proteins (RBPs) that specifically binds to ac4C modification and mediate downstream cellular activities (readers) have not been reported yet. We synthesized acetylated and non-acetylated RNA probes by in vitro transcription. The sequences of the probes were segments of FUS and 18s rRNA, which contain ac4C sites as reported. A biotin-RNA pulldown assay and mass spectrometry were performed with HEK 293T cell lysates.
Project description:N4-acetylcytidine (ac4C), a conserved chemical modification in eukaryotic prokaryotes that is catalyzed by the N-acetyltransferase 10 (NAT10) enzyme, plays a crucial role in promoting mRNA stability and translation. However, the biological function and mechanisms of NAT10-mediated ac4C in human cancer were poorly defined. In order to investigate the regulatory mechanism of NAT10 in gastric cancer, we performed ac4C RIP-seq(acRIP-seq) analysis in AGS cells with NAT10 knockout compared with control in two repeats.
Project description:The diverse RNA modifications play essential functions in gene expression regulation. Aberrant RNA modifications are frequently associated with cancers, while the underlying mechanisms and clinical significance remain poorly understood. Here we revealed that the ac4C RNA acetyltransferase NAT10 is significantly upregulated in esophageal cancers (ESCA) and associated with poor ESCA prognosis. In addition, using cancer cell lines, xenograft tumor models, Nat10 conditional knockin and conditional knockout mice, in vivo ESCA tumorigenesis model and chemical inhibition approaches, we uncovered the critical physiological functions of NAT10 in promoting esophageal cancer tumorigenesis and progression in vitro and in vivo. Mechanistically, NAT10 depletion reduced the abundance of ac4C-modified tRNAs and significantly decreased the translation efficiencies of mRNAs enriched for ac4C-modified-tRNA decoded codons. We further identified EGFR as a key downstream target that facilitates NAT10’s oncogenic functions in promoting esophageal cancer progression. In terms of clinical significance, we demonstrated that NAT10 promotes esophageal cancer resistance to EGFR inhibitor gefitinib, and combination of NAT10 depletion and gefitinib treatment synergistically inhibits esophageal cancer progression in vitro and in vivo. Our data uncovered novel molecular mechanisms underlying esophageal cancer progression at the layer of mRNA translation control and provided molecular insights for development of effective cancer therapeutic strategies.
Project description:Mammalian oocyte maturation is driven by strictly translational regulation of maternal mRNAs stored in the cytoplasm. However, the function and mechanism of post-transcriptional chemical modifications especially the newly identified N4-acetylcytidine (ac4C) catalyzed by N-acetyltransferase 10 (NAT10) in this process are previously unknown. In this study, we developed a low-input ac4C sequencing technology - ac4C LACE-seq and mapped 8241 ac4C peaks at the whole transcriptome level using 50 mouse oocytes at the germinal vesicle (GV) stage. We profiled the mRNA landscapes of NAT10-interactions and ac4C modifications. The NAT10-interacted and ac4C modified transcripts displayed association with high translation efficiency in oocytes. Oocyte-specific Nat10 knockout wiped out ac4C signals in oocytes and caused severe defects in meiotic maturation and female infertility. ac4C LACE-seq results indicated that Nat10 deletion led to a failure of ac4C deposition on mRNAs encoding key maternal factors such as MAY2, ZAR1, BTG4 and cyclin B1 that regulate transcriptome stability and maternal-to-zygotic transition. Nat10-deleted oocytes had decreased mRNA translation efficiencies during meiotic maturation, partially due to the direct inhibition ac4C sites on specific transcripts. In sum, we developed low-input, high-sensitivity mRNA ac4C profiling approach and highlighted the important physiological function of ac4C in precise regulation of the oocyte meiotic maturation by enhancing translation efficiency.
Project description:Mammalian oocyte maturation is driven by strictly translational regulation of maternal mRNAs stored in the cytoplasm. However, the function and mechanism of post-transcriptional chemical modifications especially the newly identified N4-acetylcytidine (ac4C) catalyzed by N-acetyltransferase 10 (NAT10) in this process are previously unknown. In this study, we developed a low-input ac4C sequencing technology—ac4C LACE-seq and mapped 8241 ac4C peaks at the whole transcriptome level using 50 mouse oocytes at the germinal vesicle (GV) stage. We profiled the mRNA landscapes of NAT10-interactions and ac4C modifications. The NAT10-interacted and ac4C modified transcripts displayed association with high translation efficiency in oocytes. Oocyte-specific Nat10 knockout wiped out ac4C signals in oocytes and caused severe defects in meiotic maturation and female infertility. ac4C LACE-seq results indicated that Nat10 deletion led to a failure of ac4C deposition on mRNAs encoding key maternal factors such as MAY2, ZAR1, BTG4 and cyclin B1 that regulate transcriptome stability and maternal-to-zygotic transition. Nat10-deleted oocytes had decreased mRNA translation efficiencies during meiotic maturation, partially due to the direct inhibition ac4C sites on specific transcripts. In sum, we developed low-input, high-sensitivity mRNA ac4C profiling approach and highlighted the important physiological function of ac4C in precise regulation of the oocyte meiotic maturation by enhancing translation efficiency.