Project description:Microplastics (MPs) as widespread contamination pose high risk for aquatic organisms.Intestinal microbiotahas have high interaction with immune system of host body. In this study, intestinal microbiota of zebrafish after Polystyrene (PS-MPs) exposure were characterized by 16S rDNA amplicon sequencing. We found that 100nm and 200μm PS-MPs exposure significantly increased diversity of intestinal microbiota and all the three sizes of PS-MPs increased abundance of pathogenic bacteria.
Project description:In a prior report, we observed two distinct lung microbiomes in healthy subjects that we termed â??pneumotypesâ??: pneumotypeSPT, characterized by high bacterial load and supraglottic predominant taxa (SPT) such as the anaerobes Prevotella and Veillonella; and pneumotypeBPT, with low bacterial burden and background predominant taxa (BPT) found in the saline lavage and bronchoscope. Here, we determined the prevalence of these two contrasting lung microbiome types, in a multi-center study of healthy subjects. We confirmed that a lower airway microbiome enriched with upper airway microbes (pneumotypeSPT) was present in ~45% of healthy individuals. Cross-sectional Multicenter cohort. BAL of 49 healthy subjects from three cohort had their lower airway microbiome assessed by 16S rDNA sequencing and microbial gene content (metagenome) was computationally inferred from taxonomic assignments. The amplicons from total 100 samples are barcoded; the barcode and other clinical characteristics (e.g. inflammatory biomarkers and metabolome data) for each sample are provided in the 'Pneumotype.sep.Map.A1.txt' file.
Project description:Herein, we evaluated the regulation of plantaricin NC8 on gut microbiota by in vitro simulation system, and assessed their modulation on different intestinal types, namely enterotype 1 (ET B) and enterotype 2 (ET P), for the first time. Plantaricin NC8 could not significantly promote or inhibit the production short chain fatty acids (SCFAs) by the gut flora in the fecal samples from eight subjects to produce through Gas chromatography (GC) determining, neither ET B nor ET P. 16S rDNA sequencing showed that plantaricin NC8 shortened the Shannon index of ET B and the Simpson index of ET P, but their β diversity change was not statistically significant. In addition, plantaricin NC8 could promote the growth of beneficial bacteria. Results showed that plantaricin NC8 mainly increased the abundance of Actinobacterias, Bacteroides, Bifidobacterium, Megamonas, Escherichia-Shigella, and decreased the abundance of Streptococcus in ET B. And it also increased the abundance of Prevotella_9, Bifidobacterium, Escherichia-Shigella, Mitsuokella and others in ET P. Plantaricin NC8 can influence intestinal microorganisms, but the influence were different for different enterotypes.
2022-03-30 | GSE199735 | GEO
Project description:Intestinal microorganisms of fish
| PRJNA808657 | ENA
Project description:Intestinal microorganisms of fish
Project description:We utilized the well-characterized murine T cell transfer model of colitis to find specific alterations in the intestinal luminal proteome associated with inflammation. Mass spectrometry proteomic analysis of colonic samples permitted the identification of ~10,000-12,000 unique peptides that corresponded to 5610 protein clusters identified across three groups, including the colitic Rag1 -/- T cell recipients, isogenic Rag1 -/- controls, as well as wild-type mice. Bioinformatic analyses on host and microbial proteins found specific proteins and GO term functionalities unique to each group, as well as GO terms shared across the three cohorts. We further demonstrated that the colitic mice exhibited a significant increase in Proteobacteria and Verrucomicrobia that was substantiated with 16S rDNA sequencing.
Project description:Prostate of SD rats was injected with 0.1 ml 1% carrageenan to induce chronic nonbacterial prostatitis, and the control rats injected with sterile saline. Then, the cecal contents were collected for 16S rDNA sequencing.
Project description:Ulcerative colitis (UC), belonging to inflammatory bowel disease (IBD), is a chronic and relapsing inflammatory disorders of the gastrointestinal tract, which is not completely cured so far. Valeriana jatamansi is a Chinese medicine used clinically to treat "diarrhea", which is closely related to UC. This study was to elucidate the therapeutic effects of V. jatamansi extract (VJE) on dextran sodium sulfate (DSS)-induced UC in mice and its underlying mechanism. In this work, VJE effectively ameliorate the symptoms, histopathological scores and reduce the production of inflammatory factors of UC mice. The colon untargeted metabolomics analysis and 16S rDNA sequencing showed remarkable differences in colon metabolite profiles and intestinal microbiome composition between the control and DSS groups, and VJE intervention can reduce these differences. Thirty-two biomarkers were found and modulated the primary pathways including pyrimidine metabolism, arginine biosynthesis and glutathione metabolism. Meanwhile, twelve significant taxa of gut microbiota were found. Moreover, there is a close relationship between endogenous metabolites and intestinal flora. These findings suggested that VJE ameliorates UC by inhibiting inflammatory factors, recovering intestinal maladjustment, and regulating the interaction between intestinal microbiota and host metabolites. Therefore, the intervention of V. jatamansi is a potential therapeutic treatment for UC.
2023-07-24 | PXD043047 | Pride
Project description:16S sequencing of intestinal microorganisms
Project description:The relationship between the microbial changes with clinical-pathological outcomes are still far from being conclusive. Herein, we investigate the ability of metagenomics (MG) and metaproteomics (MP) saliva data in distinguishing C, L0 and L1 patients. For that, we combined two strategies using MG analysis using 16S rDNA sequencing of saliva cells, and MP analysis using liquid chromatography tandem mass spectrometry of saliva supernatant and cells.