High resolution spatially resolved transcriptomic atlas of kidney injury and repair by RNA hybridization-based in situ sequencing [10X Visium]
Ontology highlight
ABSTRACT: High resolution spatially resolved transcriptomic atlas of kidney injury and repair by RNA hybridization-based in situ sequencing [10X Visium]
Project description:Spatially resolved transcriptomics technologies allow for the measurement of gene expression in situ. We applied direct RNA hybridization-based in situ sequencing (ISS, Cartana) to compare male and female healthy mouse kidneys and the male kidneys injury and repair timecourse of ischemic reperfusion injury (IRI). A pre-selected panel of 200 genes were used to identify the dynamics of cell states and their spatial distributions during injury and repair. We developed a new computational pipeline, CellScopes, for the rapid analysis, multi-omic integration and visualization of spatially resolved transcriptomic datasets. The resulting atlas allowed us to resolve distinct kidney niches, dynamic alterations in cell state over the course of injury and repair and cell-cell interactions between leukocytes and kidney parenchyma. Projection of snRNA-seq dataset from the same injury and repair samples allowed us to impute the spatial localization of genes not directly measured by Cartana.
Project description:Spatially resolved transcriptomics technologies allow for the measurement of gene expression in situ. We applied direct RNA hybridization-based in situ sequencing (ISS, Cartana) to compare male and female healthy mouse kidneys and the male kidneys injury and repair timecourse of ischemic reperfusion injury (IRI). A pre-selected panel of 200 genes were used to identify the dynamics of cell states and their spatial distributions during injury and repair. We developed a new computational pipeline, CellScopes, for the rapid analysis, multi-omic integration and visualization of spatially resolved transcriptomic datasets. The resulting atlas allowed us to resolve distinct kidney niches, dynamic alterations in cell state over the course of injury and repair and cell-cell interactions between leukocytes and kidney parenchyma. Projection of snRNA-seq dataset from the same injury and repair samples allowed us to impute the spatial localization of genes not directly measured by Cartana.
Project description:Spatially resolved gene expression was prepard by dissociated hman prostate tissue to single cells, and collected & prepped for RNA-seq using the Visium Spatial Gene Expression kit. 5000 cells were collected and sequenced at a depth of 50k cells/gene on a 2X150nt lane in a NovaSeq 6000. SpaceRanger alignment was performed to produce the RAW files
Project description:We performed Visium CytAssist (10X), GeoMx DSP (Nanostring) and Chromium Flex (10X Genomics) full transcriptome profiling on Breast Cancer (BC), Lung Cancer (LC) and diffuse large B cell lymphoma (DLBCL) samples from archival FFPE blocks. We explore the data quality across blocks with different storage times and DV200 values for all the three methods. We compared the cell type signature purity between ST methods Visium and GeoMx by utilising pathology annotations and scRNAseq. For the Visium and Chromium methods with a large number of data points we explored the heterogeneity between tissues. Finally, we demonstrate the discovery of patient-specific tumor-TME interactions across all three methods.
Project description:Visium (10x Genomics) spatially resolved transcriptomics data generated from normal and Idiopathic Pulmonary Fibrosis (IPF) lung parenchyma tissues collected from human donors. The fresh-frozen tissues that were analyzed were from four healthy control (HC) subjects and from four IPF patients. For each IPF patient, three different tissues were selected representing areas of mild (“B1”), moderate (“B2\") or severe (“B3”) fibrosis within the same donor, as determined by histological inspection of Hematoxylin and Eosin (H&E)-stained samples. Data from a total of 25 tissue sections, from 16 unique lung tissue blocks. The lung tissues were collected post-mortem (HC donors) or during lung transplant/resection (IPF patients) after obtaining informed consent. The study protocols were approved by the local human research ethics committee (HC: Lund, permit number Dnr 2016/317; IPF: Gothenburg, permit number 1026-15) and the samples are anonymized and cannot/should not be traced back to individual donors.