Project description:<p>This first clinical study of the Human Microbiome Project (HMP) addresses whether individuals share a core human microbiome. It involves broad determination of the microbiota found in five anatomical sites: the oral cavity, skin, nasal cavity, gastrointestinal tract and vagina. This study will enroll approximately 300 healthy male and female adults, 18-40 years old, from two geographic regions of the US: Houston, TX and St. Louis, MO. The participation of healthy individuals will create a baseline for discovery of the core microbiota typically found in various areas of the human body. The information from this initial study can then be used to help assess the changes in the complement of microbiota found on or within diseased individuals.</p>
Project description:<p>This study is to investigate placental microbiome through 16S rDNA-based and whole genome shotgun metagenomic sequencing. Identified taxa and their gene carriage patterns were compared to other human body sites niches. The placental microbiome profiles were most akin to the human oral microbiome.</p>
Project description:HuMiChip was used to analyze human oral and gut microbiomes, showing significantly different functional gene profiles between oral and gut microbiome. The results were used to demonstarte the usefulness of applying HuMiChip to human microbiome studies.
Project description:<p>This first clinical study of the Human Microbiome Project (HMP) addresses whether individuals share a core human microbiome. It involves broad determination of the microbiota found in five anatomical sites: the oral cavity, skin, nasal cavity, gastrointestinal tract and vagina. This study will enroll approximately 300 healthy male and female adults, 18-40 years old, from two geographic regions of the US: Houston, TX and St. Louis, MO. The participation of healthy individuals will create a baseline for discovery of the core microbiota typically found in various areas of the human body. The information from this initial study can then be used to help assess the changes in the complement of microbiota found on or within diseased individuals.</p>
Project description:HuMiChip was used to analyze human oral and gut microbiomes, showing significantly different functional gene profiles between oral and gut microbiome.
Project description:The gut microbiome is a malleable microbial community that can remodel in response to various factors, including diet, and contribute to the development of several chronic diseases, including atherosclerosis. We devised an in vitro screening protocol of the mouse gut microbiome to discover molecules that can selectively modify bacterial growth. This approach was used to identify cyclic D,L-α-peptides that remodeled the Western diet (WD) gut microbiome toward the low-fat-diet microbiome state. Daily oral administration of the peptides in WD-fed LDLr-/- mice reduced plasma total cholesterol levels and atherosclerotic plaques. Depletion of the microbiome with antibiotics abrogated these effects. Peptide treatment reprogrammed the microbiome transcriptome, suppressed the production of pro-inflammatory cytokines (including interleukin-6, tumor necrosis factor-α and interleukin-1β), rebalanced levels of short-chain fatty acids and bile acids, improved gut barrier integrity and increased intestinal T regulatory cells. Directed chemical manipulation provides an additional tool for deciphering the chemical biology of the gut microbiome and might advance microbiome-targeted therapeutics.
Project description:The gut microbiome is a malleable microbial community that can remodel in response to various factors, including diet, and contribute to the development of several chronic diseases, including atherosclerosis. We devised an in vitro screening protocol of the mouse gut microbiome to discover molecules that can selectively modify bacterial growth. This approach was used to identify cyclic D,L-α-peptides that remodeled the Western diet (WD) gut microbiome toward the low-fat-diet microbiome state. Daily oral administration of the peptides in WD-fed LDLr-/- mice reduced plasma total cholesterol levels and atherosclerotic plaques. Depletion of the microbiome with antibiotics abrogated these effects. Peptide treatment reprogrammed the microbiome transcriptome, suppressed the production of pro-inflammatory cytokines (including interleukin-6, tumor necrosis factor-α and interleukin-1β), rebalanced levels of short-chain fatty acids and bile acids, improved gut barrier integrity and increased intestinal T regulatory cells. Directed chemical manipulation provides an additional tool for deciphering the chemical biology of the gut microbiome and might advance microbiome-targeted therapeutics.
2019-12-31 | GSE104913 | GEO
Project description:microbiome in different body sites in SLE patients
Project description:The primary objective of this prospective observational study is to characterize the gut and oral microbiome as well as the whole blood transcriptome in gastrointestinal cancer patients and correlate these findings with cancer type, treatment efficacy and toxicity. Participants will be recruited from existing clinical sites only, no additional clinical sites are needed.