Project description:The plant pathogen Dickeya chrysanthemi EC16 (formerly known as Petrobacterium chrysanthemi EC16 and Erwinia chrysanthemi EC16) was found to produce a new triscatecholamide siderophore, cyclic trichrysobactin, the related catecholamide compounds, linear trichrysobactin and dichrysobactin, and the previously reported monomeric siderophore unit, chrysobactin. Chrysobactin is comprised of L-serine, D-lysine, and 2,3-dihydroxybenzoic acid (DHBA). Trichrysobactin is a cyclic trimer of chrysobactin joined by a triserine lactone backbone. The chirality of the ferric complex of cyclic trichrysobactin is found to be in the ? configuration, similar to Fe(III)-bacillibactin, which contains a glycine spacer between the DHBA and L-threonine components and is opposite that of Fe(III)-enterobactin, which contains DHBA ligated directly to L-serine.
Project description:We characterized the complete genome of a lytic Dickeya chrysanthemi bacteriophage, DchS19, which was isolated from a soil sample in Sungai Petani, Kedah, Malaysia. The phage, from the Autographviridae family, has a 39,149-bp double-stranded DNA genome containing 49 protein-coding genes and shares 94.65% average nucleotide identity with Erwinia phage pEp_SNUABM_12.
Project description:Exposure of Erwinia chrysanthemi 3937 to a combination of phenolic acids (salicylic, benzoic and t-cinnamic) each at a concentration of 0.078 mM resulted in activation of genes encoding efflux pumps and those involved in oxidative stress resistance. Keywords: phenolic acid exposure gene response
Project description:Pseudomonas aeruginosa, which is an important oppurtunistic pathogen, is a serious threat for human health, worldwide. New antimicrobial agents are in search and phenolic acids, secondary metabolites of plants, are promising candidates. In this project, the protein profile changes of Pseudomoas aeruginosa were determined after phenolic acid exposure by shot-gun proteomics. It was aimed to enlighten the antimicrobial action mechanism of subinhibitory concentrations of phenolic acids on pathogenic bacteria via proteomic approach.