Project description:Investigation of mRNA expression (using HiSeq 2500) in response to treatment of Daphnia magna to pyriproxyfen, wetland water, or stormwater samples.
2022-07-26 | GSE208591 | GEO
Project description:Biodegradable organic carbon amendments enhance attenuation of trace organic contaminants in biochar amended stormwater biofilters
Project description:Three surface waters in Gainesville, Florida were used in a 48 hour whole effluents exposure to assess gene expression profiles of male fathead minnow liver. Microarray analysis was used to determine changes in gene expression of exposed fish to waters from a site downstream of a wastewater treatment plant (streamwater), a wastewater treatment plant (wastewater), and a lake (stormwater). Differences in gene expression between fish exposed to collected waters and controls were observed. Number of altered genes and biological processes were 1028 and 18 for stormwater; 787 and 19 for streamwater; and: 575 and 12 for wastewater. In general, the effects observed in all exposed fish were related with fatty acid metabolism, DNA repair, oxidation-reduction process, cell wall catabolic process and apoptosis. All exposed fish showed altered expression of genes related with DNA damage repair. In particular fish exposed to stormwater and streamwater showed downregulation of several key intermediates transcripts of cholesterol. The presence and environmental persistence of perfluorinated chemicals (PFCs) in these waters, the resemblance in known effects on transcripts with those found in this study, suggest that the set of genes differentially regulated in fathead minnows after 48 hours of exposure may be attributed to exposure to PFCs.
Project description:Infective endocarditis results in the growth of a vegetative mass on native or bio prosthetic valves hindering function and increasing risk of thromboses. This study set out to determine the proteomic composition of these vegetations including the influence of different micro-organisms and the proteases known to be present. Our data has allowed us to describe for first time the influence different infectious organisms have on vegetation growth. Including the contribution of the immune response and circulatory proteins/cells make in composing a vegetation. Furthermore, we describe the protease activity and both known and novel cleavage sites in a plethora of targets. This data provides a deep insight into the homogeneity and heterogeneity of vegetation composition.
Project description:Infective endocarditis results in the growth of a vegetative mass on native or bio prosthetic valves hindering function and increasing risk of thromboses. This study set out to determine the proteomic composition of these vegetations including the influence of different micro-organisms and the proteases known to be present. Our data has allowed us to describe for first time the influence different infectious organisms have on vegetation growth. Including the contribution the immune response and circulatory proteins/cells make in composing a vegetation. Furthermore, we describe the protease activity and both known and novel cleavage sites in a plethora of targets. This data provides a deep insight into the homogeneity and heterogeneity of vegetation composition.
Project description:Investigating the microbial community structure and abundance of functional genes responsible for nitrogen processing in stormwater biofilters
Project description:Three surface waters in Gainesville, Florida were used in a 48 hour whole effluents exposure to assess gene expression profiles of male fathead minnow liver. Microarray analysis was used to determine changes in gene expression of exposed fish to waters from a site downstream of a wastewater treatment plant (streamwater), a wastewater treatment plant (wastewater), and a lake (stormwater). Differences in gene expression between fish exposed to collected waters and controls were observed. Number of altered genes and biological processes were 1028 and 18 for stormwater; 787 and 19 for streamwater; and: 575 and 12 for wastewater. In general, the effects observed in all exposed fish were related with fatty acid metabolism, DNA repair, oxidation-reduction process, cell wall catabolic process and apoptosis. All exposed fish showed altered expression of genes related with DNA damage repair. In particular fish exposed to stormwater and streamwater showed downregulation of several key intermediates transcripts of cholesterol. The presence and environmental persistence of perfluorinated chemicals (PFCs) in these waters, the resemblance in known effects on transcripts with those found in this study, suggest that the set of genes differentially regulated in fathead minnows after 48 hours of exposure may be attributed to exposure to PFCs. Three surface water sites were chosen for effluent collection in Gainesville, Florida: A lake (stormwater), surface water downstream of a wastewater treatment plant (streamwater), and a wastewater treatment plant effluent used for landscaping irrigation (wastewater). Water from each site was collected two days prior to the fish exposure experiment using Chemfluor ® tubing and a 120 liters steel barrels coated with polyester resin (gel coat) to avoid cross-contamination. Three barrels for each effluent were collected during day 1. Water from the barrel was transported to the laboratory and pumped into four fiberglass cylinders in the aquatic toxicology facility. Water from each cylinder was then pumped into four replicate aquariums per treatment and kept for 1 day without fish (pre-treatment). On day 2, four male fathead minnows from a common tank were transferred to each replicate aquarium and kept for 48 hours, with one 75% water change after first 24 hours. The exposure system consisted of 40 L glass aquaria. Each exposure was conducted in quadruplicate and each aquarium contained the four male fish in 25 L of treatment water . The water used in the control treatment was carbon filtered, dechlorinated tap water. The positions of the treatment tanks were randomized and test initiation times were staggered to ensure an exposure/sampling interval of 48 h. The fish were not fed during the experiment. The temperature range of the water was 24-26 °C with a photoperiod of 16 h light: 8 h dark. Liver was isolate from 4 males indviduals for each treatment except for control group (3 individuals).