Project description:Global proteomics profiling of anaplastic large cell lymphoma cell lines DEL, SU-DHL-1 (ALK+), Mac-1, Mac-2A (ALK-) as well as Hodgkin lymphoma cell lines L-428, L-540, L-1236 and HDLM-2.
Project description:Analysis of differential gene expression in human non-Hodgkin`s lymphoma cell lines and a primary leukaemic tumor sample of large cell anaplastic type in comparison with Hodgkin`s lymphoma cell lines and other non-Hodgkin`s lymphoma samples and non-neoplastic lymphocytes Keywords: cell type comparison
Project description:The aim was to dissect molecular changes in histone and non-histone protein acetylation dynamics following the genetic or pharmacological inhibition of HDAC activity in a model of Anaplastic Large Cell Lymphoma (ALCL), a T cell non-Hodgkin lymphoma, predominantly found in children and adolescents.
Project description:Analysis of differential gene expression in human non-Hodgkin`s lymphoma cell lines and a primary leukaemic tumor sample of large cell anaplastic type in comparison with Hodgkin`s lymphoma cell lines and other non-Hodgkin`s lymphoma samples and non-neoplastic lymphocytes Experiment Overall Design: Samples were analyzed to be compared to publically available data sets
Project description:An oncogenic axis of STAT-mediated BATF3 upregulation causing MYC activity in classical Hodgkin and anaplastic large cell lymphoma.
Project description:To identify genes and pathways involved in the pathogenesis of Hodgkin Lymphoma (HL) and Anaplastic Large Cell Lymphoma (ALCL) , we used the Ontario Cancer Institute (OCI) Human 27k arrays (UNH Homo sapiens 19K8 array), to study the expression profiling in pairs of HL-derived cell lines (KMH2 and L428) and ALCL-derived cell lines (DEL and SR-786).
Project description:Ophelia syndrome is characterized by the coincidence of severe neuropsychiatric symptoms, classical Hodgkin lymphoma, and the presence of antibodies to the metabotropic glutamate 5 receptor (mGluR5). Little is known about the pathogenetic link between these symptoms and the role anti-mGluR5-antibodies play. We investigated lymphoma tissue from patients with Ophelia syndrome and with isolated classical Hodgkin lymphoma by quantitative immunocytochemistry for mGluR5-expression. Further, we studied the L-1236, L-428, L-540, SUP-HD1, KM-H2, and HDLM-2 classical Hodgkin lymphoma cell lines by FACS and Western blot for mGluR5-expression, and by transcriptome analysis. mGluR5 surface expression differed significantly in terms of receptor density, distribution pattern, and percentage of positive cells. Highest levels were found in the L-1236 line. RNA-sequencing revealed more than 800 genes that were higher expressed in L-1236 in comparison to classical Hodgkin lymphoma-controls. High mGluR5-expression was associated with upregulation of PI3K/AKT and MAPK pathways and of downstream targets (e.g. EGR1) known to be involved in classical Hodgkin lymphoma progression. Finally, mGluR5 expression was increased in the classical Hodgkin lymphoma-tissue of our Ophelia syndrome patient in contrast to five classical Hodgkin lymphoma-patients without autoimmune encephalitis. Given the association of encephalitis and classical Hodgkin’s lymphoma in Ophelia syndrome, it is possible that mGluR5-expression on classical Hodgkin lymphoma cells not only drives tumor progression, but may also trigger anti-mGluR5 encephalitis already before classical Hodgkin lymphoma-manifestation.
Project description:Background Epigenetic changes are involved in the extinction of the B-cell gene expression program of classical Hodgkin lymphoma. However, little is known regarding epigenetic similarities between classical Hodgkin lymphoma and plasma cell myeloma cells, both of which share an extinction of the gene expression program of mature B-cells. Design and methods Global histone H3 acetylation patterns were determined in cell lines derived from classical Hodgkin lymphoma, plasma cell myeloma and B-cell lymphoma by chromatin immunoprecipitation and subsequent hybridization onto promoter tiling arrays. H3K27 trimethylation was analyzed by chromatin immunoprecipitation and real-time DNA-PCR for selected genes. Epigenetic modifications were compared to gene expression data. Results B-cell characteristic genes were hypoacetylated in classical Hodgkin lymphoma and plasma cell myeloma cell lines, as demonstrated by comparison of their histone H3 acetylation patterns to those of B-cell lines. However, the number of genes jointly hyperacetylated and expressed in classical Hodgkin lymphoma and plasma cell myeloma cell lines, such as IFR4/MUM1 and RYBP, is limited. Moreover, H3K27 trimethylation for selected B-cell characteristic genes revealed that this additional epigenetic silencing is much more prevalent in classical Hodgkin lymphoma as compared to plasma cell myeloma. Conclusion Our epigenetic data support the view that classical Hodgkin lymphoma is characterized by an abortive plasma cell differentiation with a down-regulation of B-cell characteristic genes but without activation of most plasma cell typical genes. Combined 5-aza-dC/TSA (A/T) treatment: The diffuse large B-cell lymphoma (DLBCL)-derived cell lines SU-DHL4, SU-DHL6 and HT and the Burkitt lymphoma-derived cell lines Daudi, Namalwa and Raji were treated with 5-aza-dC at a concentration of 3 µM for 6 days. 5-aza-dC and medium was replaced at day 2 and 5. At the fifth day - in addition to 3 µM 5-aza-dC - cells were incubated for 24 hours with 625 nM TSA. RNA was isolated according to standard protocols (Qiagen, Hilden, Germany) and used for Affymetrix GeneChip hybridization (HG-U133A). Microarrays were normalized using RMA and differential expression was calculated using moderated t-test. The gene expression profiles of the untreated and treated cell lines (with the exception of HT) were generated in duplicates. Microarray data (CEL files) for AZA/TSA-treated BL-derived cell lines Raji, Daudi and Namalwa were previously published (GEO accession GSE8388).
Project description:Background Epigenetic changes are involved in the extinction of the B-cell gene expression program of classical Hodgkin lymphoma. However, little is known regarding epigenetic similarities between classical Hodgkin lymphoma and plasma cell myeloma cells, both of which share an extinction of the gene expression program of mature B-cells. Design and methods Global histone H3 acetylation patterns were determined in cell lines derived from classical Hodgkin lymphoma, plasma cell myeloma and B-cell lymphoma by chromatin immunoprecipitation and subsequent hybridization onto promoter tiling arrays. H3K27 trimethylation was analyzed by chromatin immunoprecipitation and real-time DNA-PCR for selected genes. Epigenetic modifications were compared to gene expression data. Results B-cell characteristic genes were hypoacetylated in classical Hodgkin lymphoma and plasma cell myeloma cell lines, as demonstrated by comparison of their histone H3 acetylation patterns to those of B-cell lines. However, the number of genes jointly hyperacetylated and expressed in classical Hodgkin lymphoma and plasma cell myeloma cell lines, such as IFR4/MUM1 and RYBP, is limited. Moreover, H3K27 trimethylation for selected B-cell characteristic genes revealed that this additional epigenetic silencing is much more prevalent in classical Hodgkin lymphoma as compared to plasma cell myeloma. Conclusion Our epigenetic data support the view that classical Hodgkin lymphoma is characterized by an abortive plasma cell differentiation with a down-regulation of B-cell characteristic genes but without activation of most plasma cell typical genes. Gene expression analysis of Hodgkin lymphoma (cHL) and B-cell lines: Microarray data for three Hodgkin lymphoma cell lines (KM-H2, L1236, L428) and the B-cell line Namalwa that were published previously by our group (GEO accession GSE8388) were analyzed together with newly generated data for the B-cell lines SU-DHL4 and SU-DHL6. For all cell lines, RNA was isolated according to standard protocols (Qiagen, Hilden, Germany) and used for Affymetrix GeneChip hybridization (HG-U133A). Microarrays were normalized using RMA, and differential expression was calculated using moderated t-test. The gene expression profiles of the cell lines were generated in duplicates.