Project description:The objective of modern pig breeding is to exhaust the genetic potential in reproduction performance of sows regarding to litter size and litter weight of piglets. During gestation period, umbilical cord contributes to placenta-fetal communication and plays an indispensable role in the intrauterine embryonic development. In this study, we attempted to analyze the molecular mechanism of reproductive declined in high-parity sows from the perspective of umbilical cord blood. Firstly, we analyzed the reproductive character data of sows, and then the histological analysis of umbilical cord phenotype was performed. Next, we evaluated the effect of umbilical cord blood exosomes (UCB-EXO) on angiogenesis. Moreover, the expression characteristics of miRNA in UCB-EXO of high-parity sows with poor reproductive performance (OS) and multiparous sows with excellent reproductive performance (MS) were analyzed. Results showed that the reproductive performance performed best at 3rd-7th and gradually decreased after 8th parities. Angiogenesis was repressed in OS piglets. Moreover, the Exo-MS exhibited pro-angiogenesis properties, with those of Exo-OS were diminished. With the increase of parities, the angiogenesis and immune function of sows decreased significantly, greatly limited the reproductive potential of sows. The data demonstrated that miRNAs of UCB-EXO played a central role in intrauterine development and suggested a novel possible explanation for reproductive potential, provides reference for increasing female reproductive efficiency.
Project description:<p><strong>BACKGROUND:</strong> Dietary intervention has been reported to improve intestinal health. The intestinal microbiota of newborn animals plays a fundamental role in the development of intestinal function and the innate immune system. However, little is currently known about dietary interventions in the gut microbiota and barrier function of livestock, especially suckling Bamei piglets. To this end, we studied the effect of early dietary supplementation on intestinal bacterial communities and intestinal barrier function in piglets.</p><p><strong>RESULTS:</strong> 10 purebred Bamei sows were randomly allocated into two groups. In group one, the piglets received a supplementary milk replacer on day 7 of age, whereas the other control group was allowed sow’s milk alone. At 21 days, 18 and 17, respectively, piglets in each group of average weight were randomly selected and sacrificed. Tissue and digesta samples were collected from the jejunum to evaluate differences in the microbiome-metabolome and the mRNA expression of inflammatory cytokines (TLR4, TNFα and IL-8) and barrier proteins (ZO-1, Occludin and Claudin-1). Sequencing of 16S rRNA revealed that ES improved the gut microbiome composition of Bamei suckling piglets. The relative abundances of some bacterial species such as Lactobacillales, Romboutsia, Actinobacillus, Bacteroides were significantly reduced in the ES group. Metabolomics analysis indicated that 23 compounds were enriched and 35 compounds decreased in the ES group. And correlation analysis demonstrated that some gut bacterial genera were highly correlated with altered gut microbiota-related metabolites. Meanwhile, ES of Bamei suckling piglets altered the gene expression of inflammatory cytokine and barrier protein in the jejunum.</p><p><strong>CONCLUSIONS:</strong> In summary, these results provide important insights on the relationships between jejunal microbiota and related metabolites, and jejunal barrier function during the early life of Bamei suckling piglets.</p>
Project description:Maternal stress occuring during gestation can influence the functioning of the stress and immune responses in offspring. Maternal supplementation with immunomodulatory compounds such as omega-3 polyunsaturated fatty acids may reduce inflammation associated with maternal stress, promoting offspring health and growth Sows were fed diets supplemented with microalgae or fish oil from gestation day 75 and were challenged with LPS on gestation day 112. Previously, LPS challenge in the male piglets of these sows resulted in differences in fever and cortisol responses among piglets from different maternal treatments. Therefore, the adrenal gland was chosen for microarray analysis to assess the effects of the maternal treatment on the gene expression within the hypothalamic-pituitary-adrenal axis.
Project description:The aim of this study was to explore whether, and if so, how Bacillus subtilis KC1 can enhance the growth performance of broilers that have been adversely affected by Mycoplasma gallisepticum (MG) infection. A total of 96 1-day-old male broilers were randomly divided into 4 groups: the control group (basal diet), the MG group (basal diet + MG challenge), the Bacillus subtilis KC1 group (basal diet + Bacillus subtilis KC1 supplementation), the Bacillus subtilis KC1 + MG group (basal diet + Bacillus subtilis KC1 supplementation + MG challenge). The trial lasted 42 days, and the results showed that the MG group had significantly reduced body weight and average daily gain, as well as increased feed conversion ratio of broilers, compared to the control group. Dietary supplementation with Bacillus subtilis KC1 significantly improved the growth performance of MG-infected broilers. In addition, dietary supplementation with Bacillus subtilis KC1 significantly improved oxidative stress and inflammatory response markers, characterized by increased superoxide dismutase levels and reduced levels of malondialdehyde, interleukin-1β, and tumor necrosis factor-α. Furthermore, both metabolomics and transcriptomics analyses indicated that MG infection markedly disrupted amino acid metabolism in broilers, whereas Bacillus subtilis KC1 supplementation alleviated the abnormal amino acid metabolism caused by MG infection. These results suggested that Bacillus subtilis KC1 may alleviate the poor growth performance caused by MG infection in broilers by improving amino acid metabolism.
Project description:Transcriptional profiling of Day 30 embryos (D30E) was performed. First parity sows were submitted to an ovulation-induction protocol, intermittent suckling (IS), during lactation. IS consisted of 8 h/d separation from their litters during the last 7d of a 28d lactation. During separation, sows received boar exposure. There were 3 treatments: control (C28, n=19), where piglets were weaned at D28 of lactation and were bred after weaning and two IS treatments: sows were either bred at their first induced estrus during lactation (IS21FE, n=18), or were “skipped” and bred at their second estrus (IS21SE, n= 17) which occurred after final weaning at D28. Sows were slaughtered and embryos were collected on D30 of gestation for DNA PCR sexing. Later, D30E from the same sex with similar weight were pooled for further microarray investigation.
2015-09-16 | GSE73020 | GEO
Project description:Modified Bazhen improved reproductive performance and breast milk quality of sows.
Project description:Iron is an essential metal for both animals and microbiota, and neonates and infants of humans and animals, in general, are at the risk of iron insufficient. However, excess dietary iron usually causes negative impacts on the host and microbiota. This study aimed to investigate over-loaded dietary iron supplementation on growth performance, the distribution pattern of iron in the gut lumen and the host, intestinal microbiota, and intestine gene expression profile of piglets. Sixty healthy weaning piglets were randomly assigned to six groups: fed with diets supplemented with ferrous sulfate monohydrate at the dose of 50ppm (Fe50 group), 100ppm (Fe100 group), 200ppm (Fe200 group), 500ppm (Fe500 group), and 800ppm (Fe800) for three weeks. The results indicated that increasing iron had no effects on growth performance but increased diarrheal risk and iron deposition in intestinal digesta, tissues of intestine and liver, and serum. High iron also reduced serum iron-binding capacity, apolipoprotein, and immunoglobin A. The RNA-sequencing analysis revealed that iron changed colonic gene expression profile, such as interferon gamma-signal transducer and activator of transcription 2 based anti-virus and bacteria gene network. Increasing iron also shifted cecal and colonic microbiota, such as reducing alpha diversity, Clostridiales and Lactobacillus reuteri, and increasing Lactobacillus and Lactobacillus amylovorus. Collectively, this study demonstrated that high dietary iron increased diarrheal incidence, changed intestinal immune response-associated gene expression, and shifts gut microbiota. The results would enhance our knowledge of iron effects on the gut and microbiome in piglets, and further contribute to understanding these aspects in humans.
Project description:Transcriptional profiling of Day 30 embryos (D30E) was performed. First parity sows were submitted to an ovulation-induction protocol, intermittent suckling (IS), during lactation. IS consisted of 8 h/d separation from their litters during the last 7d of a 28d lactation. During separation, sows received boar exposure. There were 3 treatments: control (C28, n=19), where piglets were weaned at D28 of lactation and were bred after weaning and two IS treatments: sows were either bred at their first induced estrus during lactation (IS21FE, n=18), or were “skipped” and bred at their second estrus (IS21SE, n= 17) which occurred after final weaning at D28. Sows were slaughtered and embryos were collected on D30 of gestation for DNA PCR sexing. Later, D30E from the same sex with similar weight were pooled for further microarray investigation. Stimulating lactational oestrus then two mating strategies were applied to primiparous sows. For the microarray experiment, three biological replicates (three sows) were chosen from each treatment group comparing control (C28) to either IS21FE or IS21SE. A pool of females and males D30E were chosen and pooled separately for each comparison.
Project description:A summary of the work associated to these microarrays is the following: Diet plays a role in the development of the immune system, and polyunsaturated fatty acids can modulate the expression of a variety of genes. Human milk contains conjugated linoleic acid (CLA), a fatty acid that seems to contribute to immune development. Indeed, recent studies carried out in our group in suckling animals have shown that the immune function is enhanced after feeding 80:20 isomer mix of c9,t11 and t10,c12 CLA, respectively. However, little work has been done on the effects of CLA on gene expression, and even less regarding immune system development in early life. With all these concepts in mind, we determined the expression profile of Mesentheric Lymph Nodes (MLN) from animals supplemented with CLA during gestation and suckling through dam’s milk (Group A) or by oral gavage (Group B), supplemented just during suckling (Group C) and control animals (Group D) with the aid of the specific GeneChip ® Rat Genome 230 2.0 (Affymettrix). Bioinformatic analyses were performed using the GeneSpring GX software package v10.0.2 and lead to the identification of 123 genes differentially expressed in all three dietary approaches. Generation of a Biological Association Network (BAN) evidenced several genes, such as connective tissue growth factor (Ctgf), tissue inhibitor of metalloproteinase 1 (Timp1), galanin (Gal), synaptotagmin 1 (Syt1), growth factor receptor bound protein 2 (Grb2) actin gamma 2 (Actg2) and smooth muscle alpha actin (Acta2), as highly interconnected nodes of the resulting network. Gene underexpression was confirmed by Real-Time RT-PCR. We conclude that Ctgf, Timp1, Gal and Syt1, among others, are genes modulated by CLA supplementation that may have a role on lymphoproliferation and mucosal immune responses in early life. The aim of our study was to evaluate, by using whole genome microarrays, the effects of dietary supplementation with an 80:20 isomer mix of c9,t11 and t10,c12 CLA, respectively, on Mesentheric Lymph Nodes gene expression, during gestation and/or suckling. Three experimental approaches were conducted to assess the effects of CLA supplementation on I) pups from dams fed with 1% CLA diet during the two weeks of gestation and throughout the suckling period (Group A). These pups received CLA through the dam’s milk during suckling (Total Period of CLA Supplementation (TPS) 5 wk); II) pups from dams fed with 1% CLA diet during gestation and standard diet during suckling. These pups were CLA-supplemented daily during suckling by oral gavage (TPS 5 wk) (Group B); III) pups from dams fed standard diet during gestation and suckling and receiving CLA by daily oral gavage throughout the suckling period (TPS 3 wk) (Group C). Group D, pups from dams fed standard diet throughout the study, constituted the reference diet group (TPS 0 wk). Triplicate samples were hybridized for each experimental condition (12 samples in total). The samples provided were analyzed using the specific software GeneSpring GX.
Project description:This study examines whether maternal low ω6:ω3 ratio diet and offspring seaweed (SW) supplementation can improve offspring immunity and performance by elucidating the effects on piglet serum proteome. A total of 16 sows were given either a standard (CR, 13:1) or low ω6:ω3 ratio diet (LR, 4:1) during pregnancy and lactation and their male weaned piglets were supplemented with SW powder (4 g/kg, SW) or not (CT) in a 21-day post-weaning (PW) diet. Four PW piglet groups were then identified based on dam and piglet treatment, namely CRCT, CRSW, LRCT, and LRSW (n = 10 each). Piglet serum collected at weaning and d21 PW were analyzed (n = 5 each) using TMT-based quantitative proteomics and validated by appropriate assays.