Project description:We identified miRNAs differentially regulated upon Salmonella infection by comparative deep-sequencing analysis of cDNA libraries prepared from the small RNA population (10–29 nt) of HeLa cells infected with Salmonella (20 hpi) and mock-treated cells. Considering that at a MOI of 25 Salmonella is internalized in only 10-15% of the HeLa cells, we separated the fraction of cells which had internalized Salmonella (Salmonella+) from the bystander fraction (Salmonella-) by fluorescence-activated cell sorting (FACS), and extended the analysis of miRNA changes to these samples. Interestingly, we observed that Salmonella infection induces a significant decrease in the expression of all the detected members of the miR-15 family
Project description:To have a global picture of the miRNAs regulated upon Salmonella infection, we assessed small RNA changes, by RNA-sequencing, of HeLa cells infected with Salmonella Typhimurium compared with mock-treated cells . In addtion to the total population, we evaluated miRNA expression in the fraction of HeLa cells with internalized bacteria (Salmonella-positive), as well as in bystander cells, separated by fluorescence activated cell sorting (FACS)
Project description:To have a global picture of the miRNAs regulated upon treatement with secretome of Salmonella infected cells, we assessed small RNA changes, by RNA-sequencing, of HeLa cells treated with sectretome of Salmonella infected cells or mock-treated cells
Project description:OmpR is a DNA binding protein belonging to the OmpR/EnvZ two component system. This system is known to sense changes in osmolarity in Escherichia coli. Recently, OmpR in Salmonella enterica serovar Typhimurium was found to be activated by acidic pH and DNA relaxation. In this study, ChIP-on-chip was employed to ascertain the genome-wide distribution of OmpR in Salmonella Typhimurium and Escherichia coli in acidic and neutral pH. In addition we investigated the affect of DNA relaxation on OmpR binding in Salmonella Typhimurium.
Project description:HilD is a regulator of Salmonella pathogenicity island 1 (SPI-1) virulence genes in Salmonella enterica serovar Typhimurium. To identify novel HilD-regulated genes, we mapped the genome-wide association of HilD in S. Typhimurium under SPI-1-inducing conditions (high salt, low aeration) using ChIP-seq. HilD was C-terminally tagged with 3 FLAG tags in strain 14028s.
Project description:Salmonella is an important enteric pathogen that causes a spectrum of diseases varying from mild gastroenteritis to life threatening typhoid fever. Salmonella does not have lac operon. However, E. Coli, Salmonella’s close relative, has lac operon. Being an enteric pathogen like E. coli, Salmonella will also benefit from lac operon. Then, why Salmonella has lost lac operon?. To address this question, lacI, an important component of lac operon was expressed in Salmonella via pTrc99A plasmid. As a control, pTrc99A without lacI was also expressed in Salmonella. The effect of LacI on the transcription profile of Salmonella was analyzed using microarray technique.
Project description:Purpose: Searching for sRNAs in Salmonella pullorum by RNA sequencing and exploring their functions.Methods: High-throughput sequencing of RNA extracted from Salmonella pullorum under normal growth conditions to detect newly discovered sRNAs, followed by experiments to verify their functions.Results: The proportion of Clean Reads of this sequencing was >65%, and the base Q30s were all above 85%, indicating that the sequencing quality is good and can be used for subsequent analysis. The sRNAscanner software predicted that 148 new sRNAs might exist on the reference genome of Salmonella fowl dysentery, and the reads obtained from sequencing were compared to the genome, and it was found that 110 out of the 148 newly predicted sRNAs could be detected.Conclusions: sRNAs are widely found in bacteria and are involved in many physiological processes. In this study, we detected new sRNAs in Salmonella pullorum by RNA-seq, which lays the foundation for the subsequent investigation of the regulatory functions of sRNAs in bacteria.
Project description:Salmonella spp. biofilms have been implicated in persistence in the environment and plant surfaces. In addition, Salmonella is able to form biofilms on the surface on cholesterol gallstones. The ability of Salmonella spp. on these surfaces is superior to biofilm formation on surfaces on glass or plastic. Thus, we hypothesized that Salmonella gene expression is specific during biofilm development on cholesterol surfaces.
Project description:Data-independent acquisition of mouse liver with four treatments: normal chow diet and healthy (1-5), normal chow diet and inoculated with Salmonella (6-11), high fat diet and healthy (12-16), and high fat diet and inoculated with Salmonella (17-21).
Project description:Peripheral blood transcriptome is an important intermediate data source for investigation of the mechanism of Salmonella invasion, proliferation, and transmission but its development in pig is quite limited. We challenged four-week-old piglets (Duroc × Landrace × Yorkshire crossbred) with Salmonella enterica serovar Typhimurium LT2 and investigated the peripheral blood miRNA expression profile before treatment (d0) and at 2 days post inoculation (dpi) using deep sequencing technology.