Project description:Low coverage whole genome sequencing (lc-WGS) from inducible Tet TKO (Tet iTKO) and control (Ctrl) mouse ESCs (mESC), as well as for germline Dnmt TKO mESCs. mESCs were sorted to isolate the Live/Dead dye and Thy1.2 negative CD326+GFP+ population representing the mESCs populations responsive to the tamoxifen treatment. The cells were resuspended in FACS buffer and filtered with a 70 µM filter before sorting. These bulk-population samples were analyzed by using low coverage Whole Genome Sequencing (lc-WGS).
Project description:We performed shallow whole genome sequencing (WGS) on circulating free (cf)DNA extracted from plasma or cerebrospinal fluid (CSF), and shallow WGS on the tissue DNA extracted from the biopsy in order to evaluate the correlation between the two biomaterials. After library construction and sequencing (Hiseq3000 or Ion Proton), copy number variations were called with WisecondorX.
Project description:Whole genome sequencing (WGS) of tongue cancer samples and cell line was performed to identify the fusion gene translocation breakpoint. WGS raw data was aligned to human reference genome (GRCh38.p12) using BWA-MEM (v0.7.17). The BAM files generated were further analysed using SvABA (v1.1.3) tool to identify translocation breakpoints. The translocation breakpoints were annotated using custom scripts, using the reference GENCODE GTF (v30). The fusion breakpoints identified in the SvABA analysis were additionally confirmed using MANTA tool (v1.6.0).
Project description:Cryptosporidium parvum is an important zoonotic parasitic disease worldwide, but the molecular mechanisms of the host–parasite interaction are not fully understood. Noncoding microRNAs (miRNAs) are considered key regulators of parasitic diseases. Therefore, we used microarray, qPCR, and bioinformatic analyses to investigate the intestinal epithelial miRNA expression profile after Cryptosporidium parvum infection.Twenty miRNAs were differentially expressed after infection (four upregulated and 16 downregulated). Further analysis of the differentially expressed miRNAs revealed that many important cellular responses were triggered by Cryptosporidium parvum infection, including cell apoptosis and the inflammatory and immune responses.This study demonstrates for the first time that the miRNA expression profile of human intestinal epithelium cells is altered by C. parvum infection. This dysregulation of miRNA expression may contribute to the regulation of host biological processes in response to C. parvum infection, including cell apoptosis and the immune responses. These results provide new insight into the regulatory mechanisms of host miRNAs during cryptosporidiosis, which may offer potential targets for future C. parvum control strategies.