Project description:Tail fat in sheep (Ovis aries), has evolved mainly in response to cold weather for better energy storage. As things stand, too much tail fat in sheep can lead to a reduction in feed utilisation and is also unpopular with consumers due to the excessive fat content in the tail of sheep. Therefore, the need to find the mechanism of tail fat formation is obvious. In this study, we elected to utilise Kazakh sheep, prolific Suffolk sheep, and their hybrid F2 generation as research objects. Sheep transcriptome sequencing technology was employed to screen and explore target candidate genes related to sheep tail fat deposition. Comparison with RNA-seq data from fat-tailed and thin-tailed tissue, the LncRNA-mRNA-miRNA axis was identified as main functional pathway in the formation of fat in tail. Our results offer valuable insights into the fat deposition of sheep and provide a significant genomic resource for future genetic studies and the enhancement of genome-assisted breeding in sheep and other domestic animals.
Project description:the hypothalamus tissues of high-reproduction small-tailed Han sheep and low-reproduction Wadi sheep were collected, and full-length transcriptome sequencing by Oxford Nanopore Technologies (ONT) was performed to explore the key functional genes associated with sheep fecundity. The differentially expressed genes (DEGs) were screened and enriched using DESeq2 software through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG).
Project description:Chinese indigenous sheep can be classified into two types according to their tail morphology: fat-rumped and thin-tailed sheep, of which the typical breeds are Altay sheep and Tibetan sheep, respectively. To identify the differentially expressed proteins (DEPs) underlying the phenotypic differences between tail types, we used iTRAQ combined with multi-dimensional liquid chromatography tandem mass spectrometry (LC-MS/MS) technology to detect candidate proteins. We then subjected these to a database search, and identified the DEPs. Finally, bioinformatics technology was used to carry out GO functional and KEGG pathway analyses. A total of 3248 proteins were identified, of which 44 were up-regulated and 40 were down-regulated DEPs. Analyzing their GO function terms and KEGG pathways revealed that the functions of these DEPs are mainly binding, catalytic activity, structural molecule activity, molecular function regulator, and transporter activity. Among the genes encoding the DEPs, APOA2, GALK1, ADIPOQ, and NDUFS4 are associated with fat formation and metabolism.
Project description:An essential tissue involved in the development and regulation of lipid metabolism in animals is adipose tissue. The “fat-tail” can supply energy for sheep during migration and winter when a low amount of dry matter intake is available. Tail fat content affects meat quality and varies significantly among the different breeds of sheep. Ghezel (fat-tailed) and Zel (thin-tailed) are two important local Iranian sheep breeds that show different patterns of fat storage. The current study presents the transcriptome characterization of tail fat using RNA-sequencing in order to get a better comprehension of the molecular mechanism of lipid storage in the two sheep breeds. The results of sequencing were analyzed with bioinformatics methods, including differentially expressed genes (DEGs) identification, functional enrichment analysis, structural classification of proteins, protein–protein interaction (PPI), network analysis and module analysis. The results revealed a total of332 DEGs between the Zel and Ghezel breed, with78 up-regulated and 254 down-regulated DEGs in the Zel breed. Identification of differential genes showed that some DEGs, such as IL-6, LIPG, SAA1, SOCS3 and HIF-1α, with the largest fold change had close association with lipid deposition. Also, important lipid storage genes such as FASN and SCPEP1 had high levels of expression. Furthermore, functional enrichment analysis revealed some pathways associated with fat deposition, such as “Fatty acid metabolism”, “Fatty acid biosynthesis” and“HIF-1 signaling pathway”. In addition, structural classification of proteins showed major DEGs in transcription factor classes such as JUNB, NR4A3, FOSL1, MAFF, NR4A1, CREB3L1 and ATF3 were up-regulated in the Zel breed. IL-6, JUNB, and related DEGs were up-regulated in the PPI network.HMGCS1, SUCLA2 and STT3B and related DEGs were down-regulated in the PPI network and had high topology scores as hub genes. This implies the DEGs of these modules are important candidate genes for tail fat metabolism and, therefore, can be further studied.
Project description:An essential tissue involved in the development and regulation of lipid metabolism in animals is adipose tissue. The “fat-tail” can supply energy for sheep during migration and winter when a low amount of dry matter intake is available. Tail fat content affects meat quality and varies significantly among the different breeds of sheep. Ghezel (fat-tailed) and Zel (thin-tailed) are two important local Iranian sheep breeds that show different patterns of fat storage. The current study presents the transcriptome characterization of tail fat using RNA-sequencing in order to get a better comprehension of the molecular mechanism of lipid storage in the two sheep breeds. The results of sequencing were analyzed with bioinformatics methods, including differentially expressed genes (DEGs) identification, functional enrichment analysis, structural classification of proteins, protein–protein interaction (PPI), network analysis and module analysis. The results revealed a total of332 DEGs between the Zel and Ghezel breed, with78 up-regulated and 254 down-regulated DEGs in the Zel breed. Identification of differential genes showed that some DEGs, such as IL-6, LIPG, SAA1, SOCS3 and HIF-1α, with the largest fold change had close association with lipid deposition. Also, important lipid storage genes such as FASN and SCPEP1 had high levels of expression. Furthermore, functional enrichment analysis revealed some pathways associated with fat deposition, such as “Fatty acid metabolism”, “Fatty acid biosynthesis” and“HIF-1 signaling pathway”. In addition, structural classification of proteins showed major DEGs in transcription factor classes such as JUNB, NR4A3, FOSL1, MAFF, NR4A1, CREB3L1 and ATF3 were up-regulated in the Zel breed. IL-6, JUNB, and related DEGs were up-regulated in the PPI network.HMGCS1, SUCLA2 and STT3B and related DEGs were down-regulated in the PPI network and had high topology scores as hub genes. This implies the DEGs of these modules are important candidate genes for tail fat metabolism and, therefore, can be further studied.
Project description:Archive with all the variants detected within the sheep transcriptome. Transcriptome sequencing (RNA-seq) was performed on total RNA extracted from longissimus dorsi muscle, perinephric fat and tailed fat. The experiment was performed in 3 Lanzhou fat-tailed sheep, 3 Small Tail Han sheep and 3 Tibetan sheep, which differ in their tail traits. The project Coordinator is Lin Ma from Northwest A&F University, China.
Project description:Fat transcriptome patterns associated with heterogeneous metabolic, hormonal and behavioral adaptation to high fat diet feeding in mice