Project description:Bacterial wilt caused by Ralstonia solanacearum is a lethal, soil-borne disease of tomato. Control of the disease with chemicals and crop rotation is insufficient, because the pathogen is particularly well adapted for surviving in the soil and rhizosphere. Therefore, cultivar resistance is the most effective means for controlling bacterial wilt, but the molecular mechanisms of resistance responses remain unclear. We used microarrays to obtain the characteristics of the gene expression changes that are induced by R. solanacearum infection in resistant cultivar LS-89 and susceptible cultivar Ponderosa.
2012-10-06 | GSE31807 | GEO
Project description:Bacterial wilt suppressive communities from tomato rhizosphere
Project description:Bacterial wilt caused by Ralstonia solanacearum is a lethal, soil-borne disease of tomato. Control of the disease with chemicals and crop rotation is insufficient, because the pathogen is particularly well adapted for surviving in the soil and rhizosphere. Therefore, cultivar resistance is the most effective means for controlling bacterial wilt, but the molecular mechanisms of resistance responses remain unclear. We used microarrays to obtain the characteristics of the gene expression changes that are induced by R. solanacearum infection in resistant cultivar LS-89 and susceptible cultivar Ponderosa. Seedlings of LS-89 and Ponderosa at the five to six leaf-stage were inoculated on their stems just above the cotyledon by cutting to one-third the stem depth with a knife, adding a drop of bacterial suspension (1e+6 cfu/ml of R. solanacearum strain 8107S) or distilled water to the opening, and then clipping the wound site to avoid bending. Inoculated plants were grown in a growth chamber at 30ºC under 30,000 lux light intensity for 12 h a day. At 1dpi, stems were sampled by dissecting 5 mm long sections from 5 mm below the inoculation site. For each hybridization, RNA from 15 plants was used. Three biological replicates of microarray analysis were performed.
Project description:Investigation of whole genome gene expression level changes in the bacterial wilt pathogen Ralstonia solanacearum, strain GMI1000 at 20°C and 28°C in culture and in planta. The tropical strain GMI1000 cannot wilt tomato plants at 20°C although it can cause full-blown disease at 28°C.
Project description:Investigation of whole genome gene expression level changes in the bacterial wilt pathogen Ralstonia solanacearum, strain UW551 at 20°C and 28°C in culture and in planta. The temperatel strain UW551 can wilt and cause full-blown disease on tomato plants at 28°C as well as at 20°C.
Project description:Biofilm lifestyle is critical for bacterial pathogens to colonize and protect themselves from host immunity and antimicrobial chemicals in plants and animals. The formation and regulation mechanism of phytobacterial biofilm are still obscure. Here, we found that Ralstonia solanacearum Resistance to ultraviolet C (RuvC) is highly abundant in biofilm and positively regulates pathogenicity by governing systemic movement in tomato xylem. RuvC protein accumulates at the later stage of biofilm and specifically targets the Holliday junction (HJ) like structures to disrupt biofilm extracellular DNA (eDNA) lattice, thus facilitating biofilm dispersal. Recombinant RuvC protein can resolve extracellular HJ prevent bacterial biofilm formation. Heterologous expression of R. solanacearum or Xanthomonas oryzae pv. oryzae RuvC with plant secretion signal in tomato or rice confers resistance to bacterial wilt or bacterial blight disease, respectively. Plant chloroplast localized HJ resolvase monokaryotic chloroplast 1 (MOC1) which is structural similar to bacterial RuvC shows a strong inhibit effect on bacterial biofilm formation. Re-localization of SlMOC1 to apoplast in tomato roots leads to increase resistance to bacterial wilt. Our novel finding reveals a critical pathogenesis mechanism of R. solanacearum and provides an efficient biotechnology strategy to improve plant resistance to bacteria vascular disease.
2024-09-29 | GSE270737 | GEO
Project description:An antagonistic bacterium WJB0802 against tomato bacterial wilt and its application
Project description:Soilborne fungal pathogens cause devastating yield losses, are highly persistent and difficult to control. To culminate infection, these organisms must cope with limited availability of iron. Here we show that the bZIP protein HapX functions as a key regulator of iron homeostasis and virulence in the vascular wilt fungus Fusarium oxysporum. Deletion of hapX does not affect iron uptake, but causes derepression of genes involved in iron-consuming pathways, leading to impaired growth under iron-depleted conditions. F. oxysporum strains lacking HapX are reduced in their capacity to invade and kill tomato plants and immunodepressed mice. The virulence defect of ΔhapX on tomato plants is exacerbated by coinoculation of roots with a biocontrol strain of Pseudomonas putida, but not with a siderophore-deficient mutant, indicating that HapX contributes to iron competition of F. oxysporum in the tomato rhizosphere. These results establish a conserved role for HapX-mediated iron homeostasis in fungal infection of plants and mammals.
Project description:Soilborne fungal pathogens cause devastating yield losses, are highly persistent and difficult to control. To culminate infection, these organisms must cope with limited availability of iron. Here we show that the bZIP protein HapX functions as a key regulator of iron homeostasis and virulence in the vascular wilt fungus Fusarium oxysporum. Deletion of hapX does not affect iron uptake, but causes derepression of genes involved in iron-consuming pathways, leading to impaired growth under iron-depleted conditions. F. oxysporum strains lacking HapX are reduced in their capacity to invade and kill tomato plants and immunodepressed mice. The virulence defect of M-NM-^ThapX on tomato plants is exacerbated by coinoculation of roots with a biocontrol strain of Pseudomonas putida, but not with a siderophore-deficient mutant, indicating that HapX contributes to iron competition of F. oxysporum in the tomato rhizosphere. These results establish a conserved role for HapX-mediated iron homeostasis in fungal infection of plants and mammals. Iron dependent gene expression in Fusarium oxysporum wt and M-NM-^ThapX mutant was measured 1 hour after shifting the mycelia to minimal medium with or without 50 M-NM-<M Fe2(SO4)3. Three independent experiments were performed.