Project description:A collection of 1145 clones from an EST project on female tick salivary gland genes was hybridized on glass slides to RNA extracted from several feeding stages of adult female tick salivary glands, including unfed and replete, and from adult male ticks, either unfed or fed in the presence or absence of female ticks. In the female ticks, the early fed (<50 mg) and partially fed (30-200 mg) groups were very similar. The fast feeding (350-500 mg) and replete ticks were similar to each other, but different from the partially fed. The unfed ticks were more similar to the fast feeding – replete groups than the early fed-partially fed groups. In the males, there were differences between the males fed in the presence or absence of females, but overall, these groups were very similar. The unfed ticks were significantly different from the fed ticks. Males showed clear differences with females in expression, as well. The unfed females had high levels of genes involved in protein synthesis, while genes possibly involved in survival on the host, such as anticoagulants, seemed to be most expressed in the early and partially fed states. By contrast, in the males, the protein synthesis genes were expressed more in all three groups, while the putative secreted genes for survival were expressed less. Keywords: time course, effect of feeding, sex, effect of presence of females
Project description:A collection of 1145 clones from an EST project on female tick salivary gland genes was hybridized on glass slides to RNA extracted from several feeding stages of adult female tick salivary glands, including unfed and replete, and from adult male ticks, either unfed or fed in the presence or absence of female ticks. In the female ticks, the early fed (<50 mg) and partially fed (30-200 mg) groups were very similar. The fast feeding (350-500 mg) and replete ticks were similar to each other, but different from the partially fed. The unfed ticks were more similar to the fast feeding â replete groups than the early fed-partially fed groups. In the males, there were differences between the males fed in the presence or absence of females, but overall, these groups were very similar. The unfed ticks were significantly different from the fed ticks. Males showed clear differences with females in expression, as well. The unfed females had high levels of genes involved in protein synthesis, while genes possibly involved in survival on the host, such as anticoagulants, seemed to be most expressed in the early and partially fed states. By contrast, in the males, the protein synthesis genes were expressed more in all three groups, while the putative secreted genes for survival were expressed less. Keywords: time course, effect of feeding, sex, effect of presence of females All samples were compared to the partially fed females. Females consisted of five groups: unfed, early fed, partially fed, fast feeding and replete. Four or five biological replicates were done of each, with the dyes used in both possible ways. In the males, three groups were used: unfed, feeding in the presence of females, and feeding in the absence of females. Two biological replicates were done of the feeding males, and one of extracts was hybridized twice for the males fed in the presence of females. Unfed males used one RNA sample, extracted from a large pool of ticks.
Project description:Ticks are obligate blood feeding ectoparasites that transmit a wide variety of pathogenic organisms to their vertebrate hosts. The tick Amblyomma sculptum is vector of Rickettsia rickettsii, the causative agent of Rock Mountain spotted fever, the most lethal rickettsiosis that affects humans. It is known that the transmission of pathogens by ticks is mainly associated with the physiology of the feeding process. Pathogens that are acquired with the blood meal must first colonize the tick gut and later the salivary glands (SG). Then, to be transmitted during a subsequent blood feeding, pathogens must reach the saliva. Tick saliva contains a complex mixture of bioactive molecules with anti-clotting, anti-platelet aggregation, vasodilatory, anti-inflammatory, and immunomodulatory properties to counteract both the host hemostasis and defense mechanisms, which besides facilitating tick feeding, may also benefits survival and establishment of pathogens in the host. In the current study, we compared the sialotranscriptome of unfed A. sculptum ticks and fed for 72 hours on rabbits using RNA-seq. The total of reads obtained were mapped in 9,560 coding sequences (CDSs) distributed in six major functional classes. Genes encoding secreted proteins, including lipocalins, mucins, protease inhibitors, glycine rich, metalloprotease, and 8.9 kDa superfamily were mostly upregulated by blood feeding. Selected genes were analyzed by RT-qPCR and all of them presented the same transcriptional profile regulation observed in RNA-seq, corroborating the transcriptional findings of this study. Finally, we mapped 116 proteins secreted in tick saliva by mass spectrometry-based proteomic analysis. Identified proteins should be functionally characterized and might be potential targets to develop vaccines for tick control and/or blocking of R. rickettsii transmission as well as pharmacological bioproducts with anti-hemostatic, anti-inflammatory and anti-bacterial activities.
Project description:Subolesin is an evolutionary conserved protein that was recently discovered in Ixodes scapularis as a tick protective antigen and has a role in tick blood digestion, reproduction and development. In other organisms, subolesin orthologs may be involved in the control of developmental processes. Because of the profound effect of subolesin knockdown in ticks and other organisms, we hypothesized that subolesin has a role in gene expression, thus affecting multiple cellular processes. The objective of this study was to provide support for the role of subolesin in gene expression. Keywords: time course Total RNA was prepared and pooled from subolesin dsRNA- and saline-injected ticks at 6 and 9 dpi (5 and 8 days of feeding).
Project description:Ticks are obligate blood feeding ectoparasites that transmit a wide variety of pathogenic microorganisms to their vertebrate hosts. Amblyomma sculptum is vector of Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, the most lethal rickettsiosis that affects humans. It is known that the transmission of pathogens by ticks is mainly associated with the physiology of the feeding process. Pathogens that are acquired with the blood meal must first colonize the tick gut and later the salivary glands in order to be transmitted during a subsequent blood feeding via saliva. Tick saliva contains a complex mixture of bioactive molecules with anticlotting, antiplatelet aggregation, vasodilatory, anti-inflammatory, and immunomodulatory properties to counteract both the hemostasis and defense mechanisms of the host. Besides facilitating tick feeding, the properties of saliva may also benefits survival and establishment of pathogens in the host. In the current study, we compared the sialotranscriptome of unfed A. sculptum ticks and those fed for 72 h on rabbits using next generation RNA sequencing (RNA-seq). The total of reads obtained were assembled in 9,560 coding sequences (CDSs) distributed in different functional classes. CDSs encoding secreted proteins, including lipocalins, mucins, protease inhibitors, glycine-rich proteins, metalloproteases, 8.9 kDa superfamily members, and immunity-related proteins were mostly upregulated by blood feeding. Selected CDSs were analyzed by real-time quantitative polymerase chain reaction preceded by reverse transcription (RT-qPCR), corroborating the transcriptional profile obtained by RNA-seq. Finally, high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis revealed 124 proteins in saliva of ticks fed for 96-120 h. The corresponding CDSs of 59 of these proteins were upregulated in salivary glands of fed ticks. To the best of our knowledge, this is the first report on the proteome of A. sculptum saliva. The functional characterization of the identified proteins might reveal potential targets to develop vaccines for tick control and/or blocking of R. rickettsii transmission as well as pharmacological bioproducts with antihemostatic, anti-inflammatory and antibacterial activities.