Project description:Rhizobia are soil bacteria that induce nodule formation on leguminous plants. In the nodules, they reduce dinitrogen to ammonium that can be utilized by plants. Besides nitrogen fixation, rhizobia have other symbiotic functions in plants including phosphorus and iron mobilization and protection of the plants against various abiotic stresses including salinity. Worldwide, about 20% of cultivable and 33% of irrigation land is saline, and it is estimated that around 50% of the arable land will be saline by 2050. Salinity inhibits plant growth and development, results in senescence, and ultimately plant death. The purpose of this study was to investigate how rhizobia, isolated from Kenyan soils, relieve common beans from salinity stress. The yield loss of common bean plants, which were either not inoculated or inoculated with the commercial R. tropici rhizobia CIAT899 was reduced by 73% when the plants were exposed to 300 mM NaCl, while only 60% yield loss was observed after inoculation with a novel indigenous isolate from Kenyan soil, named S3. Expression profiles showed that genes involved in the transport of mineral ions (such as K+, Ca2+, Fe3+, PO43-, and NO3-) to the host plant, and for the synthesis and transport of osmotolerance molecules (soluble carbohydrates, amino acids, and nucleotides) are highly expressed in S3 bacteroids during salt stress than in the controls. Furthermore, genes for the synthesis and transport of glutathione and γ-aminobutyric acid were upregulated in salt-stressed and S3-inocculated common bean plants. We conclude that microbial osmolytes, mineral ions, and antioxidant molecules from rhizobia enhance salt tolerance in common beans.
Project description:A wide range of environmental stresses lead to an elevated production of reactive oxygen species (ROS) in plant cells thus resulting in oxidative stress. The biological nitrogen fixation in the legume - Rhizobium symbiosis is at high risk of damage from oxidative stress. Common bean (Phaseolus vulgaris) active nodules exposed to the herbicide Paraquat (1,1 '-Dimethyl-4, 4'-bipyridinium dichloride hydrate) that generates ROS accumulation, showed a reduced nitrogenase activity and ureide content. We analyzed the global gene response of stressed nodules using the Bean CombiMatrix Custom Array 90K, that includes probes from some 30,000 expressed sequence tags (EST). A total of 4,280 ESTs were differentially expressed in oxidative stressed bean nodules; of these 2,218 were repressed. These genes were grouped in 44 different biological processes as defined by Gene Onthology. Analysis with the PathExpress bioinformatic tool, adapted for bean, identified five significantly repressed metabolic path This work presents the transcriptional profile of bean nodules, induced by strain Rhizobium tropici CIAT 899, under oxidative stress, generated experimentally by adding the herbicide Paraquat (1,1 '-Dimethyl-4, 4'-bipyridinium dichloride hydrate) for 48 hours. We analyzed the transcript profile, via microarray hybridization, using the Bean CombiMatrix Custom Array 90K, that includes probes from some 30,000 expressed sequence tags (EST). A total of 4,280 ESTs were differentially expressed in oxidative stressed bean nodules; of these 2,218 were repressed.
Project description:A wide range of environmental stresses lead to an elevated production of reactive oxygen species (ROS) in plant cells thus resulting in oxidative stress. The biological nitrogen fixation in the legume - Rhizobium symbiosis is at high risk of damage from oxidative stress. Common bean (Phaseolus vulgaris) active nodules exposed to the herbicide Paraquat (1,1 '-Dimethyl-4, 4'-bipyridinium dichloride hydrate) that generates ROS accumulation, showed a reduced nitrogenase activity and ureide content. We analyzed the global gene response of stressed nodules using the Bean CombiMatrix Custom Array 90K, that includes probes from some 30,000 expressed sequence tags (EST). A total of 4,280 ESTs were differentially expressed in oxidative stressed bean nodules; of these 2,218 were repressed. These genes were grouped in 44 different biological processes as defined by Gene Onthology. Analysis with the PathExpress bioinformatic tool, adapted for bean, identified five significantly repressed metabolic path
Project description:Paraburkholderia phymatum belongs to the β-subclass of proteobacteria. It has recently been shown to be able to nodulate and fix nitrogen in symbiosis with several mimosoid and papillionoid legumes. In contrast to symbiosis of legumes with α-proteobacteria, very little is known about the molecular determinants underlying the successful establishment of this mutualistic relationship with β-proteobacteria. In this study, we analyzed RNA-seq data of free-living P. phymatum growing under nitrogen replete and limited conditions, the latter partially mimicking the situation in nitrogen deprived soils. Among the genes up-regulated under nitrogen limitation, we found genes involved in exopolysaccharide production and motility, two traits relevant for plant root infection. Next, RNA-seq data of P. phymatum grown under free-living conditions and from symbiotic root nodules of Phaseolus vulgaris (common bean) were generated and compared. Among the genes highly up-regulated during symbiosis, we identified an operon encoding a potential cytochrome o ubiquinol oxidase (Bphy_3646-49). Bean root nodules induced by a cyoB mutant strain showed reduced nitrogenase and nitrogen fixation abilities suggesting an important role of the cytochrome for respiration inside the nodule. Analysis of mutant strains for RNA polymerase transcription factor rpoN (σ54) and its activator NifA indicated that – similar to the situation in α-rhizobia – P. phymatum RpoN and NifA are key regulators during symbiosis with P. vulgaris.