Project description:Host-microbe interactions are virtually bidirectional, benefiting both the host and microbial sides. It is becoming increasingly recognized the influence of the microbe on many aspects of host physiology and diseases, but whether/how the host affects their symbionts is poorly characterized. Here, we reported that the host acts as a critical factor to shape the lifestyle of their symbionts in the Drosophila and bacteria model system. First, we observe that Drosophila larvae play a pivotal role in competing with pathogenic symbionts in the co-existing niche. More specifically, host larvae antagonize symbionts by deconstructing the surface slick, preventing outgrowth and antagonizing the pathogenicity of S. marcescens. Furthermore, Drosophila larvae cause the shift in the transcriptomic profile of S. marcescens, characterized with the upregulated expression of genes related to bacterial proliferation and growth and the downregulated expression of genes related to bacterial pathogenicity. More importantly, advances in bacterial single-cell RNA sequencing provide opportunities to reveal transcriptional variation, including toxic factors, across individual cells and a subpopulation clustering of isogenic bacterial populations. Finally, we found that AMPs from larvae recapitulated the response of S. marcescens to the presence of Drosophila larvae. Altogether, these findings provide an insight into the pivotal roles of the host in influencing the potential pathogens' lifecycle switching from commensalism to pathogenicity, opening the door to a better understanding of the ecological relationships between the host and microbe.
Project description:Host-microbe interactions are virtually bidirectional, benefiting both the host and microbial sides. It is becoming increasingly recognized the influence of the microbe on many aspects of host physiology and diseases, but whether/how the host affects their symbionts is poorly characterized. Here, we reported that the host acts as a critical factor to shape the lifestyle of their symbionts in the Drosophila and bacteria model system. First, we observe that Drosophila larvae play a pivotal role in competing with pathogenic symbionts in the co-existing niche. More specifically, host larvae antagonize symbionts by deconstructing the surface slick, preventing outgrowth and antagonizing the pathogenicity of S. marcescens. Furthermore, Drosophila larvae cause the shift in the transcriptomic profile of S. marcescens, characterized with the upregulated expression of genes related to bacterial proliferation and growth and the downregulated expression of genes related to bacterial pathogenicity. More importantly, advances in bacterial single-cell RNA sequencing provide opportunities to reveal transcriptional variation, including toxic factors, across individual cells and a subpopulation clustering of isogenic bacterial populations. Finally, we found that AMPs from larvae recapitulated the response of S. marcescens to the presence of Drosophila larvae. Altogether, these findings provide an insight into the pivotal roles of the host in influencing the potential pathogens' lifecycle switching from commensalism to pathogenicity, opening the door to a better understanding of the ecological relationships between the host and microbe.
Project description:To determine the optimal RNA-Seq approach for animal host-bacterial symbiont analysis, we compared transcriptome bias, depth and coverage achieved by two different mRNA capture and sequencing strategies applied to the marine demosponge Amphimedon queenslandica holobiont, for which genomes of the animal host and three most abundant bacterial symbionts are available.
Project description:The mammalian gastrointestinal tract harbors thousands of bacterial species that include symbionts as well as potential pathogens. The immune responses that limit access of these bacteria to underlying tissue remain poorly defined. In this study, we used microarrays to uncover the transcriptional responses that occur in small intestinal γδ intraepithelial lymphocytes following bacterial challenge.
Project description:The mammalian gastrointestinal tract harbors thousands of bacterial species that include symbionts as well as potential pathogens. The immune responses that limit access of these bacteria to underlying tissue remain poorly defined. In this study, we used microarrays to uncover the transcriptional responses that occur in small intestinal γδ intraepithelial lymphocytes following bacterial challenge. γδ intraepithelial lymphocytes (γδ IEL) were isolated by flow cytometry from the small intestines of germ-free mice, or from age- and sex-matched conventionally-raised counterparts. We extracted RNAs from these purified γδ IEL for analysis on Affymetrix DNA microarrays. The mice were all >8 weeks in age, and each sample represents a pool of RNAs from 5-8 mice.
Project description:The goal of this study was to use heterologous microarray hybridization to determine genomic content shared among different vesicomyid symbionts. These symbionts are closely related and can be thought of as different strains of bacteria, facilitating the use of heterologous microarray hybridization to determine genomic content. Keywords: comparative genomic hybridization
Project description:Coral reefs worldwide are facing rapid decline due to coral bleaching. However, knowledge of the physiological characteristics and molecular mechanisms of coral symbionts respond to stress is scarce. Here, metagenomic and metaproteomic approach were utilized to shed light on the changes in the composition and functions of coral symbionts during coral bleaching. The results demonstrated that coral bleaching significantly affected the composition of symbionts, with bacterial communities dominating in bleached corals. Difference analysis of gene and protein indicated that symbiont functional disturbances in response to heat stress, resulting in abnormal energy metabolism that could potentially compromise symbiont health and resilience. Furthermore, our findings highlighted the highly diverse microbial communities of coral symbionts, with beneficial bacteria provide critical services to corals in stress responses, while pathogenic bacteria drive coral bleaching. This study provides comprehensive insights into the complex response mechanisms of coral symbionts under thermal stress and offers fundamental data for future monitoring of coral health.
Project description:The goal of this study was to use heterologous microarray hybridization to determine genomic content shared among different vesicomyid symbionts. These symbionts are closely related and can be thought of as different strains of bacteria, facilitating the use of heterologous microarray hybridization to determine genomic content. Keywords: comparative genomic hybridization Microarrays were built off the Ruthia magnifica genome and two replicate hybridizations to this organism were used as a baseline for comparisons. Genomic DNA from two other vesicomyid symbionts (Calyptogena kilmeri and C. pacifica symbionts) was also hybridized to the array with three biological replicates for each sample.