Project description:Porcine deltacoronavirus (PDCoV) is a newly emerging and special delta coronavirus, which infect mammals such as pigs, cattle and humans, as well as chickens and birds. Exploring RNA structures in the viral genome benefits the understanding of the role of RNA in the lifecycle of viruses. In this study, vRIC-seq is employed to analyze the RNA-RNA interaction in the whole genome structure of PDCoV in virions. About 12.87 and 13.52 million paired reads are obtained in two biological replicates, respectively, with 17.9% and 14.8% of them are identified as valid chimeric reads. These are employed to predict the RNA secondary structure, which is compact and highly structured. A twisted-cyclized conformation is observed in the RNA-RNA interaction map of PDCoV for the first time. 77 multi-way junctions are evenly distributed in the PDCoV genome. Our work provides fundamental structural insights that are essential for understanding the genomic structure and function, genetic evolution, and packaging characteristics of PDCoV.
Project description:Porcine deltacoronavirus (PDCoV) is an emerging pathogen of swine belonging to family Coronaviridae, genus Deltacoronavirus. PDCoV predominantly infects the porcine intestinal epithelial cells (IPECs) causing severe diarrhea and/or vomiting, dehydration, and death in piglets. However, there are no researches for clarifying the changes of proteins expression levels in the IPECs infected with PDCoV. To better understand the host response to PDCoV infection, in this study, an isobaric tags for relative and absolute quantification (iTRAQ) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS)-based quantitative proteomic analysis of PDCoV-infected IPEC-J2 cells were performed to investigate the differentially expressed cellular proteins in the PDCoV-infected IPEC-J2 cells. As a result, a total of 5,502 host proteins were quantified at 24 hours post-infection (hpi) in mock and infected cells, among which 78 cellular proteins were differentially expressed with 23 up-regulated proteins and 55 down-regulated proteins. Bioinformatics analysis demonstrated that most of these regulated proteins participated in immune system process and structural molecule activity. Further, expression levels of two representative proteins, ANAPC7 and IFIT1, were confirmed by relative real-time RT-PCR and western blot analysis. The data presented here will provide an overview of host cell response to PDCoV, which could benefit the development of potential antiviral research.
Project description:Sus scrofa (pig, or swine) is one of the most important economic animals and a close biological model for complex human diseases such as obesity and diabetes. It is therefore utterly important to decode the porcine microRNAome (miRNAome) as in the literature only a small portion of it is known. In this work, a comprehensive search for porcine microRNAs (miRNAs) by Illumina sequencing was performed in ten small RNA libraries prepared from mixtures of assorted tissues, which included those collected from fetuses to adult pigs. The millions of the sequencing reads were analyzed with reference to 77 known porcine miRNA precursors (pre-miRNAs) and 3,443 distinct pre-miRNAs of other mammals listed in miRBase 13.0, and the most updated porcine genome (Sscrofa9, April 2009) and available EST sequences. Additionally, miRNA candidates specific to pig are predicated by genome & EST match and hairpin folding. Our search found 72 out of 78 (~92%) known porcine miRNAs and miRNA*s, and 36 previously unannotated miRNA*s are also indentified. Furthermore, we discovered 397 novel miRNAs by mapping to the sequencing transcripts to other mammalian pre-miRNAs and 493 candidate miRNAs which do not map to other mammalian miRNAomes and could be pig-specific. We constructed sequence- and genome-position clusters for the total of 998 miRNA candidates originating from 862 pre-miRNAs, which represent 777 unique miRNA sequences. Together with the six known porcine miRNAs that not been observed in our study, we report herein the sequence families of 783 unique miRNAs and genomic distribution patterns of 622 pre-miRNAs. We preformed q-PCR experiments for selected 30 miRNAs in 47 tissue-specific samples and found agreement between the sequencing data and the q-PCR data. We envision that our report will serve as a valuable resource for future studies aimed at understanding miRNAome of pig
Project description:Porcine cytomegalovirus (PCMV; genus Cytomegalovirus, subfamily Betaherpesvirinae, family Herpesviridae) is an immunosuppressive virus that mainly inhibits the immune function of T lymphocytes and macrophages, which has caused great distress to the farming industry. In this study, we obtained the miRNA expression profiles of PCMV-infected and control porcine macrophages, PCMV-infected and control porcine tissues via high-throughput sequencing. The comprehensive analysis of miRNA profiles showed that 306 miRNA database annotated and 295 novel pig-encoded miRNAs were detected. Gene Ontology (GO) analysis of the target genes of miRNAs in PCMV infected porcine macrophages showed that the differentially expressed miRNAs are mainly involved in immune and metabolic process. This is the first report of the miRNA transcriptome in PCMV infected porcine macrophages and PCMV infected tissues and the analysis of the miRNA regulatory mechanism during PCMV infection. Further research into the regulatory mechanisms of miRNAs during immunosuppressive viral infections will contribute to the treatment and prevention of immunosuppressive viruses.