Project description:To identify transcriptional markers for beef traits related to meat tenderness and moisture, we measured the transcriptome of the Longissimus dorsi skeletal muscle in 10 Korean native cattle (KNC). We analyzed the correlation between the beef transcriptome and measurements of four different beef traits, shear force (SF), water holding capacity (WHC), cooking loss (CL), and loin eye area (LEA). We obtained non-overlapping and unique panels of genes showing strong correlations (|r| > 0.8) with SF, WHC, CL, and LEA, respectively. Functional studies of these genes indicated that SF was mainly related to energy metabolism, and LEA to rRNA processing. Interestingly, our data suggested that WHC is influenced by protein metabolism. Overall, the skeletal muscle transcriptome pointed to the importance of energy and protein metabolism in determining meat quality after the aging process. The panels of transcripts for beef traits may be useful for predicting meat tenderness and moisture. Experiment Overall Design: Gene expression profiles were correlated with beef traits measured at the same cattle.
Project description:The transcriptome of bovine Longissimus thoracis muscles from 15- and 19-month-old Charolais young bulls were analyzed in order to identify genes whose expression level was associated to beef quality scores, in particular to tenderness, juiciness and flavor, and to muscle growth potential. The expression of over 5000 genes was compared between high and low meat quality samples according to the three sensory traits, taken individually, and between animals with either a high or a low muscle growth potential. Keywords: meat sensory quality, growth potential
Project description:The transcriptome of bovine Longissimus thoracis muscles from 15- and 19-month-old Charolais young bulls were analyzed in order to identify genes whose expression level was associated to beef quality scores, in particular to tenderness, juiciness and flavor, and to muscle growth potential. The expression of over 5000 genes was compared between high and low meat quality samples according to the three sensory traits, taken individually, and between animals with either a high or a low muscle growth potential. Keywords: meat sensory quality, growth potential Twenty-five samples were analyzed. Each sample was hybridized on 4 independent microarrays and compared to a reference pool.
Project description:The Gayal (Bos frontalis) is a rare semi-domesticated cattle in China. Gayal has typical beef body shape and good meat production performance. Compared with other cattle species, it has the characteristics of tender meat and extremely low fat content. To explore the underlying mechanism responsible for the differences of meat quality between different breeds, the longissimus dorsi muscle (LM) from Gayal and Banna cattle (Bos taurus) were investigated using transcriptome analysis. The gene expression profiling identified 638 differentially expressed genes (DEGs) between LM muscles from Gayal and Banna cattle. Gene Ontology (GO) enrichment of biological functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the gene products were mainly involved in the PPAR signaling pathway, lipid metabolism and amino acid metabolism pathway. Protein-protein interaction(PPI) network analysis showed APOB, CYP7A1, THBS2, ITGAV, IGFBP1 and IGF2R may have great impact on meat quality characteristics of Gayal. Moreover, three transcription factors, FOXA2, NEUROG2, and RUNX1, which may affect meat quality by regulating the expression of genes related to muscle growth and development have also been found. In summary, our research reveals the molecular mechanisms that cause Gayal meat quality characteristics. It will contribute to improving meat quality of cattle through molecular breeding.
Project description:Beef tenderness is a complex trait of economic importance for the beef industry. Understanding the genetic and epigenetic mechanisms underlying this trait may help improve the accuracy of breeding programs and deliver a better product quality to consumers. However, little is known about epigenetic effects in the muscle of Bos taurus and their implications in tenderness, and no studies have been conducted in Bos indicus. Therefore, we analyzed Reduced Representation Bisulfite Sequencing (RRBS) to search for differences in the methylation profile of Bos indicus skeletal muscle with extreme values for beef tenderness (tender = 6 animals, tough = 6 animals).
Project description:RNA-seq analysis of differential gene expression in muscle from angus beef steers undergoing diet restriction and compensatory growth