Project description:Chromatin State Profilining using multiple histone modifications in human craniofacial tissue spanning 4.5 post conception weeks to 10 pcw The raw FASTQ sequence files are being deposited in dbGAP
Project description:Temporal analysis of Irf4 and PU.1 genome binding during B cell activation and differentiation in vitro using antigen (NP-Ficoll) CD40L and IL-2/4/5 cytokines (see Molecular Systems Biology 7:495 for details of cellular system). The results provide insight in the target genes and binding specificity of IRF4 and PU.1 during coordination of different programs of B cell differentiation. Regrettably three of the FASTQ raw sequence files in our study were corrupted during storage. FASTQ data from our experimental and control groups are available for download via GEO SRA; however, two groups are missing select raw sequence files. These include one PU.1 Day 3 group file (Sample GSM1133499) and two of four input files used to generate a concatenated “super” input file (Sample GSM1133490); the raw data provided for input consists of the two input files recovered. Importantly, FASTA sequences for both of these datasets are available as supplementary data through GEO, and we can make available upon request (rsciamma@uchicago.edu) all files in our study in the ELAND-extended alignment format. Please note that GEO no longer supports this format.
Project description:Observational, Multicenter, Post-market, Minimal risk, Prospective data collection of PillCam SB3 videos (including PillCam reports) and raw data files and optional collection of Eneteroscopy reports
Project description:Here, A549 cells expressing the ACE2 receptor were infected with SARS-CoV2, and pCHi-C was performed at 0 (mock), 8 and 24 hours post-infection. This repository provides the raw pCHi-C sequence reads and downstream processed CHiCAGO data (Rds files).
Project description:The transcription factor IRF4 regulates immunoglobulin class switch recombination and plasma cell differentiation. Its differing concentrations appear to regulate mutually antagonistic programs of B and plasma cell gene expression. We show IRF4 to be also required for generation of germinal center (GC) B cells. Its transient expression in vivo induced the expression of key GC genes including Bcl6 and Aicda. In contrast, sustained and higher concentrations of IRF4 promoted the generation of plasma cells while antagonizing the GC fate. IRF4 cobound with the transcription factors PU.1 or BATF to Ets or AP-1 composite motifs, associated with genes involved in B cell activation and the GC response. At higher concentrations, IRF4 binding shifted to interferon sequence response motifs; these enriched for genes involved in plasma cell differentiation. Our results support a model of "kinetic control" in which signaling-induced dynamics of IRF4 in activated B cells control their cell-fate outcomes. Regrettably three of the FASTQ raw sequence files in our study were corrupted during storage. FASTQ data from our experimental and control groups are available for download via GEO SRA; however, two groups are missing select raw sequence files. These include one PU.1 Day 3 group file (Sample GSM1133499) and two of four input files used to generate a concatenated “super” input file (Sample GSM1133490); the raw data provided for input consists of the two input files recovered. Importantly, FASTA sequences for both of these datasets are available as supplementary data through GEO, and we can make available upon request (rsciamma@uchicago.edu) all files in our study in the ELAND-extended alignment format. Please note that GEO no longer supports this format.
Project description:ATAC-Seq was performed for 35 AML primary specimens from primary AML cells, followed by a detailed ATAC-Seq pipeline for data processing. We provide both raw files as well as various processed files such as individual and consensus peaks.
Project description:Altered chromatin structure is a hallmark of cancer, and inappropriate regulation of chromatin structure may represent the origin of transformation. Several important studies have mapped human nucleosome distributions genome wide, but the genome-wide role of chromatin structure in cancer progression has not been addressed. We developed a MNase-Sequence Capture method, mTSS-seq, to map genome-wide nucleosome distribution in primary human lung and colon adenocarcinoma tissue. Here, we confirm that nucleosome redistribution is an early, widespread event in lung (LAC) and colon (CRC) adenocarcinoma. These altered nucleosome architectures are consistent between LAC and CRC patient samples indicating that they may serve as important early adenocarcinoma markers. We demonstrate that the nucleosome alterations are driven by the underlying DNA sequence and potentiate transcription factor binding. We conclude that DNA-directed nucleosome redistributions are widespread early in cancer progression. We have proposed an entirely new hierarchical model for chromatin-mediated genome regulation. â Nucleosome distribution mapping in primary patient tissue at all transcription start sites in the human genome Please note that two processed data files '4137N_ALLcombined.bed' and '4137T_ALLcombined.bed' (linked as Series supplementary file) are processed bed files combined from three 4137N_*_hiseq samples (total 6 raw data files) and three 4137T_*_hiseq samples (total 6 raw data files), respectively.
Project description:We developed a method that allows measuring the stable carbon isotope composition of individual species in microbial communities using metaproteomics. We call this methods “Direct Protein-SIF”. To benchmark this method, we measured twenty pure culture species using the Direct Protein-SIF method as well as Isotope Ratio Mass Spectrometry. Some of the pure cultures were measured in technical replicates to see how consistent Protein-SIF measurements are between mass spec runs. This submission thus contains 29 raw files for the pure cultures. See table in the submission for details of which species was measured for which .raw file. We also included the Direct Protein-SIF specific isotope pattern files as well as the .mzML files and PSM files required as input for the Direct Protein-SIF software. In addition to the pure culture a protein reference material (MKH files) was measured. The respective .raw files and isotopic pattern files are also included in this submission (see publication for details on how the reference material is used to calibrate the method).
Project description:Experiment with 32 hybridizations, using 16 samples of species [Homo sapiens], using 32 arrays of array design [Affymetrix Custom Array - NuGO_Hs1a520180], producing 32 raw data files and 1 transformed and/or normalized data files.
Project description:Temporal analysis of Irf4 and PU.1 genome binding during B cell activation and differentiation in vitro using antigen (NP-Ficoll) CD40L and IL-2/4/5 cytokines (see Molecular Systems Biology 7:495 for details of cellular system). The results provide insight in the target genes and binding specificity of IRF4 and PU.1 during coordination of different programs of B cell differentiation. Regrettably three of the FASTQ raw sequence files in our study were corrupted during storage. FASTQ data from our experimental and control groups are available for download via GEO SRA; however, two groups are missing select raw sequence files. These include one PU.1 Day 3 group file (Sample GSM1133499) and two of four input files used to generate a concatenated “super” input file (Sample GSM1133490); the raw data provided for input consists of the two input files recovered. Importantly, FASTA sequences for both of these datasets are available as supplementary data through GEO, and we can make available upon request (rsciamma@uchicago.edu) all files in our study in the ELAND-extended alignment format. Please note that GEO no longer supports this format. Resting mature peripheral primary B cells were enriched from the spleens of B1-8i (anti-NP gene targeted) mice. We sought to compare the genome-binding landscape of Irf4 and PU.1 prior to differentiation yet after B cell activation (Day 1) and after B cell differentiation (Day 3) of activated B cells into plasma cells (see Molecular Systems Biology 7:495 for description of cellular system). To this end, we used ChIP-seq (using the Illumina GA2 system) to obtain millions of unbiased, genome-wide, binding events. Sequences were mapped to the reference genome (mm9) and enrichment was calculated, relative to an Input sample, using QuEST algorithms.