Project description:The rate, timing, and mode of species dispersal is recognized as a key driver of the structure and function of communities of macroorganisms, and may be one ecological process that determines the diversity of microbiomes. Many previous studies have quantified the modes and mechanisms of bacterial motility using monocultures of a few model bacterial species. But most microbes live in multispecies microbial communities, where direct interactions between microbes may inhibit or facilitate dispersal through a number of physical (e.g., hydrodynamic) and biological (e.g., chemotaxis) mechanisms, which remain largely unexplored. Using cheese rinds as a model microbiome, we demonstrate that physical networks created by filamentous fungi can impact the extent of small-scale bacterial dispersal and can shape the composition of microbiomes. From the cheese rind of Saint Nectaire, we serendipitously observed the bacterium Serratia proteamaculans actively spreads on networks formed by the fungus Mucor. By experimentally recreating these pairwise interactions in the lab, we show that Serratia spreads on actively growing and previously established fungal networks. The extent of symbiotic dispersal is dependent on the fungal network: diffuse and fast-growing Mucor networks provide the greatest dispersal facilitation of the Serratia species, while dense and slow-growing Penicillium networks provide limited dispersal facilitation. Fungal-mediated dispersal occurs in closely related Serratia species isolated from other environments, suggesting that this bacterial-fungal interaction is widespread in nature. Both RNA-seq and transposon mutagenesis point to specific molecular mechanisms that play key roles in this bacterial-fungal interaction, including chitin utilization and flagellin biosynthesis. By manipulating the presence and type of fungal networks in multispecies communities, we provide the first evidence that fungal networks shape the composition of bacterial communities, with Mucor networks shifting experimental bacterial communities to complete dominance by motile Proteobacteria. Collectively, our work demonstrates that these strong biophysical interactions between bacterial and fungi can have community-level consequences and may be operating in many other microbiomes.
2017-08-02 | GSE85095 | GEO
Project description:Analysis of Bacterial and Fungal Community Structure and Diversity in Buried Soil of Ancient Ivory in Sanxingdui
Project description:Ivory is a highly prized material in many cultures since it can be carved into intricated designs and have a highly polished surface. Due to its popularity, the animals from which ivory can be sourced have started to come under threat. Identification of the ivory species is not only important for compliance with the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), it can also provide important information about the context in which the work was created. In this work, we have developed a minimally invasive workflow to remove minimal amounts of material from precious objects, and, using high-resolution mass spectrometry-based proteomics, identified the taxonomy of several ivory and bone objects from the collection of The Metropolitan Museum of Art dating from as early as 4000 B.C. We built an inhouse proteomic databases of underrepresented species based on exemplars obtained from the Mammology American Museum of Natural History collection and proposed alternative data analysis workflows for rare samples containing sparse and inconsistently preserved organic material. This is a first application demonstrating extensive and accurate ivory species identification using proteomics to unlock sequence uncertainties, e.g. Leu/Ile-discrimination.
Project description:Olfactory systems are one of the most conserved and ancient sensory systems in vertebrates. The vertebrate olfactory epithelium is colonized by complex communities of commensal microorganisms, but their impact on olfactory epithelial development and function remains unknown. Using germ-free zebrafish model, we aim to understand the transcriptional responses that colonization with a microbiota induces in olfactory organs. This study was aimed to understand the changes in gene expression in the olfactory organ of Germ Free (GF) zebrafish compared to conventionalized (ConvD) zebrafish. This experiment is related to E-MTAB-5046 (http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5046)
Project description:Olfactory systems are one of the most conserved and ancient sensory systems in vertebrates. The vertebrate olfactory epithelium is colonized by complex communities of commensal microorganisms, but their impact on olfactory epithelial development and function remains unknown. Using germ-free mouse model, we aim to understand the transcriptional responses that colonization with a microbiota induces in olfactory organs. This study was aimed to understand the changes in gene expression in the nose of Germ Free (GF) mice compared to conventionalized (ConvD) mice. This experiment is related to E-MTAB-5045 (http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5045)
Project description:A functional biodiversity microarray (EcoChip) prototype has been developed to facilitate the analysis of fungal communities in environmental samples with broad functional and phylogenetic coverage and to enable the incorporation of nucleic acid sequence data as they become available from large-scale (next generation) sequencing projects. A dual probe set (DPS) was designed to detect a) functional enzyme transcripts at conserved protein sites and b) phylogenetic barcoding transcripts at ITS regions present in precursor rRNA. Deviating from the concept of GeoChip-type microarrays, the presented EcoChip microarray phylogenetic information was obtained using a dedicated set of barcoding microarray probes, whereas functional gene expression was analyzed by conserved domain-specific probes. By unlinking these two target groups, the shortage of broad sequence information of functional enzyme-coding genes in environmental communities became less important. The novel EcoChip microarray could be successfully applied to identify specific degradation activities in environmental samples at considerably high phylogenetic resolution. Reproducible and unbiased microarray signals could be obtained with chemically labeled total RNA preparations, thus avoiding the use of enzymatic labeling steps. ITS precursor rRNA was detected for the first time in a microarray experiment, which confirms the applicability of the EcoChip concept to selectively quantify the transcriptionally active part of fungal communities at high phylogenetic resolution. In addition, the chosen microarray platform facilitates the conducting of experiments with high sample throughput in almost any molecular biology laboratory. In this study, two independent RNA samples from a pine forest soil were labelled and hybridised to a custom-made EcoChip microarray consisting of about 9000 probes targeting expressed fungals genes and about 5000 probes targeting the precursor-rRNA of different fungal lineages