Project description:Seven different Solanaceae species, Potato (Solanum tubersosum), Tomato (Solanum lycopersicum), Eggplant (Solanum melongena), Pepper (Capsicum annuum), Tobacco (Nicotiana tabaccum), Petunia and Nicotiana benthiamana were subjected to drought stress. Drought stress was applied by stopping watering of the plants, control plants were normally watered with nutrient solution. Samples were collected at 0, 1, 3, 5, 7 and 10 days after the first application of the drought stress. RNA was isolated using Qiagen RNeasy. Keywords: Direct comparison
Project description:Capsicum spp. (hot peppers) demonstrate a range of interesting bioactive properties spanning anti-inflammatory, antioxidant, and antimicrobial activities. While several species within the genus are known to produce antimicrobial peptides (AMPs), AMP sequence mining of genomic data indicates this space remains largely unexplored. Herein, in silico AMP predictions are paired with peptidomics to identify novel AMPs from the interspecific hybrid ghost pepper (Capsicum chinense x frutescens). AMP prediction algorithms reveal 115 putative AMPs within the Capsicum chinense genome of which 14 were identified in the aerial tissue peptidome. PepSAVI-MS, de novo sequencing, and complementary approaches were used to fully molecularly characterize two novel AMPs, CC-AMP1 and CC-AMP2, including elucidation of post-translational modifications and disulfide bond connectivity. Both CC-AMP1 and CC-AMP2 have little homology with known AMPs and exhibit low µM antimicrobial activity against gram-negative bacteria including Escherichia coli and Klebsiella pneumoniae. These findings demonstrate the complementary nature of peptidomics, bioactivity-guided discovery, and bioinformatics-based investigations to more fully characterize plant AMP profiles.
Project description:Antimicrobial peptides (AMPs) are compounds with a variety of bioactive properties. Especially promising are their antibacterial activities, often towards drug-resistant pathogens. Across different AMP sources, AMPs expressed within plants are relatively underexplored, with a limited number of plant AMP families identified. Recently, we identified the novel AMPs CC-AMP1 and CC-AMP2 in ghost pepper plants (Capsicum chinense x frutescens), exerting promising antibacterial activity and not classifying into any known plant AMP family. Herein, AMPs related to CC-AMP1 and CC-AMP2 were identified within both Capsicum annuum and Capsicum baccatum. Targeted MS/MS experiments were performed to determine peptide sequences, guided by in silico AMP sequence predictions.