Project description:The global emergence of soil salinization poses a serious challenge to many countries and regions. γ-Aminobutyric acid (GABA) is involved in systemic regulation of plant adaptation to salt stress, but the underling molecular and metabolic mechanism still remains largely unknown. The elevated endogenous GABA level by exogenous application of GABA could significantly improve salt tolerance in creeping bentgrass with the enhancement of antioxidant capacity, photosynthetic characteristics, osmotic adjustment (OA), and water use efficiency. GABA strongly upregulated transcript levels of AsPPa2, AsATPaB2, AsNHX2/4/6, and AsSOS1/20 in roots involved in enhanced capacity of Na+ compartmentalization and mitigation of Na+ toxicity in cytosol. Significant downregulation of AsHKT1/4 expression could be induced by GABA in leaves in relation to maintenance of significantly lower Na+ accumulation and higher K+/Na+ ratio. GABA-depressed aquaporins (AQPs) expression and accumulation induced declines in stomatal conductance and transpiration, thereby reducing water loss in leaves during salt stress. For metabolic regulation, GABA primarily enhanced sugars and amino acids accumulation and metabolism largely contributing to improved salt tolerance through maintaining OA and metabolic homeostasis. Other major pathways could be responsible for GABA-induced salt tolerance including increases in antioxidant defense, heat shock proteins, dehydrins, and myo-inositol accumulation in leaves. Integrative analyses of molecular, protein, metabolic, and physiological changes reveal systemic function of GABA on regulating ions, water, and metabolic homeostasis in non-halophytic creeping bentgrass under salt stress.
2020-01-13 | PXD015066 | Pride
Project description:Sequencing of the developing creeping bentgrass microbiome
Project description:To dissect the molecular mechanisms underlying drought tolerance (DT) in rice, transcriptome differences of a DT introgression line H471, the DT donor P28 and the drought sensitive recurrent parent HHZ under drought stress were investigated using deep transcriptome sequencing. Results revealed a differential constitutive gene expression prior to stress and distinct global transcriptome reprogramming among three genotypes under time-series drought stress, consistent with their differential genotypes and DT phenotypes.
Project description:The members of bHLH transcription factor superfamily are known to play key role in plant development and abiotic stress response. Loss-of-function of OsbHLH148 gene resulted in increased sensitivity of rice plants to drought stress. To identify the targets of OsbHLH148 and dissect the drought stress response pathway regulated by it, we performed transcriptome profiling of Osbhlh148 mutant plants under drought stress as well as well-watered conditions by RNA-sequencing.
Project description:Heat shock factors (Hsfs) are known to regulate heat and drought stress response by controlling the expression of heat shock proteins and oxidative stress responsive genes. Loss-of-function of OsHSFA2e gene resulted in increased sensitivity of rice plants to drought and heat stress. To identify the targets of OsHSFA2e and dissect the stress response pathway regulated by it, we performed transcriptome profiling of Oshsfa2e mutant plants under drought stress as well as well-watered conditions by RNA-sequencing.
Project description:In this study, genome-wide transcriptome profiling was used to understand molecular genetic mechanism of drought tolerance in rice. Illumina High-Seq 2000 platform was used for sequencing RNA from leaf tissue of rice plants exposed to controlled drought stress and well-watered conditions. The differentially expressed genes were used to identify biological process and cis-regulatory elements enriched under drought stress compared to well-watered conditions.
Project description:To dissect the molecular mechanisms underlying drought tolerance (DT) in rice, transcriptome differences of a DT introgression line H471, the DT donor P28 and the drought sensitive recurrent parent HHZ under drought stress were investigated using deep transcriptome sequencing. Results revealed a differential constitutive gene expression prior to stress and distinct global transcriptome reprogramming among three genotypes under time-series drought stress, consistent with their differential genotypes and DT phenotypes. DT introgression line H471, the DT donor P28 and the drought sensitive recurrent parent HHZ under drought stress were investigated using deep transcriptome sequencing.The drought stress treatment was started by withholding water at the tillering stage. The days were counted after the AWC in the soil reached 20% to allow drought measurements at precisely determined intervals, and the soil water content reached 15%, 10% and 7.5% after 1d, 3d and 4d drought treatment, respectively.Three top leaves for each sample were harvested for each genotype under 1d and 3d drought stress and control conditions. All samples were immediately frozen in liquid nitrogen and stored at -80C and then for transcriptome sequencing.
Project description:Here, in order to study maize drought stress responses at the molecular level, we have employed omics strategy to perform transcriptome and proteome profiling of drought contrasting maize lines at the various stages. We conducted a comparative analysis of different maize varieties at various stages after drought treatment. In addition, we evaluated some physiological responses of these maize lines under drought stress, and the results of this study provide further insights into the drought stress tolerance signatures in maize.
Project description:Comparative transcriptional profiling of two contrasting rice genotypes,IRAT109 (drought-resistant japonica cultivar) and ZS97 (drought-sensitive indica cultivar), under drought stress during the reproductive stage
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of abiotic stress molecular pathways. The goals of this study are to compare NGS-derived transcriptome profiling (RNA-seq) of contrasting slow wilting lines to quantify transcript abumdance under drought stress condition