Project description:Plants in temperate regions have evolved mechanisms to survive sudden temperature drops. Previous reports have indicated that the cold acclimation mechanism is light-dependent and does not fully operate under a low light intensity. In these studies, plants were grown under a long-day photoperiod and were more sensitive to freezing stress. However, winter annuals like Arabidopsis thaliana Col-0 germinate in the fall, overwinter as rosettes, and therefore must acclimate under short photoperiods and low irradiance. The role of light intensity was analysed in plants grown under a short-day photoperiod at the growth stage 1.14. Plants were acclimated at 4 °C for seven days under 100 and 20 μmol m-2s-1 PPFD for control and limited-light conditions, respectively. All cold acclimated plants accumulated molecular markers reportedly associated with acquired freezing tolerance, including proline, sucrose, CBFs, and COR gene protein products dehydrins and low-temperature-responsive proteins LTIs. Observed changes indicated that low PPFD did not inhibit the cold acclimation process, and the freezing stress experiment confirmed similar survival rates. The molecular analysis found distinct PPFD-specific adaptation mechanisms that were manifested in contrasting content of anthocyanins, cytokinin conjugates, abundances of proteins forming photosystems, and enzymes of protein, energy, and ROS metabolism pathways. Finally, this study led to the identification of putative proteins and metabolite markers correlating with susceptibility to freezing stress of non-acclimated plants grown under low PPFD. Our data show that Arabidopsis plants grown under short-day photoperiod can be fully cold-acclimated under limited light conditions, employing standard and PPFD-specific pathways.
Project description:Arabidopsis sfr mutants are deficient in cold acclimation during exposure to coolnon-freezing temperatures. Although not visibly affected by the cold they have lost the ability to survive subsequent freezing. We plan to investigate how the sfr2 and sfr6 mutants respond to low temperature on the gene expression level. Wild type plants that have undergone identical treatments in parallel are necessary controls. The cold treatment of plants in the rosette stage (soil grown in a 8/16 hours day/night cycle) will be carried out in a cooled growth chamber at 4 degrees for 24 hours (same light regimetreatment starting/ending at the 4th hour of light). The aerial parts of the treated and untreated plants will be collected and frozen immediately in liquid nitrogen for RNA extraction. Comparison of the cold response of thousands of Arabidopsis genes in the wild type to the situation in our freezing sensitive mutants will enhance our understanding of the cold response itself and illuminate the effect of the mutations on the cold acclimation process. Experimenter name = Irene Bramke Experimenter phone = 01784 44 3770 Experimenter fax = 01784 43 4326 Experimenter address = Royal Holloway Experimenter address = University of London Experimenter address = School of Biological Sciences Experimenter address = Bourne Building Experimenter address = Laboratory 406 Experimenter zip/postal_code = TW20 OEX Experimenter country = UK Keywords: growth_condition_design; genetic_modification_design
Project description:Arabidopsis sfr mutants are deficient in cold acclimation during exposure to coolnon-freezing temperatures. Although not visibly affected by the cold they have lost the ability to survive subsequent freezing. We plan to investigate how the sfr2 and sfr6 mutants respond to low temperature on the gene expression level. Wild type plants that have undergone identical treatments in parallel are necessary controls. The cold treatment of plants in the rosette stage (soil grown in a 8/16 hours day/night cycle) will be carried out in a cooled growth chamber at 4 degrees for 24 hours (same light regimetreatment starting/ending at the 4th hour of light). The aerial parts of the treated and untreated plants will be collected and frozen immediately in liquid nitrogen for RNA extraction. Comparison of the cold response of thousands of Arabidopsis genes in the wild type to the situation in our freezing sensitive mutants will enhance our understanding of the cold response itself and illuminate the effect of the mutations on the cold acclimation process. Experimenter name = Irene Bramke; Experimenter phone = 01784 44 3770; Experimenter fax = 01784 43 4326; Experimenter address = Royal Holloway; Experimenter address = University of London; Experimenter address = School of Biological Sciences; Experimenter address = Bourne Building; Experimenter address = Laboratory 406; Experimenter zip/postal_code = TW20 OEX; Experimenter country = UK Experiment Overall Design: 6 samples were used in this experiment
Project description:Arabidopsis thaliana and Eutrema salsugineum show the ability to cold acclimate. However, the degree of freezing tolerance depends in both cases on the accession. To elucidate the transcriptional basis of this differencial freezing tolerance, we performed where we grew plants under control conditions (20°C/18°C day/night) or under cold conditions (additional 4°C for 2 weeks). Rosettes were harvested from non-acclimated and cold acclimated plants for RNA isolation. Expression patterns were compared between treatments, accessions and species.
Project description:Alternative splicing plays a major role in expanding the potential informational content of eukaryotic genomes. It is an important post-transcriptional regulatory mechanism that can increase protein diversity and affect mRNA stability. Cold stress, which adversely affects plants growth and development, regulates the transcription and splicing of plants splicing factors. This affects the pre-mRNA processing of many genes. To identify cold regulated alternative splicing we applied Affymetrix Arabidopsis tiling arrays to survey the transcriptome under cold treatment conditions. Two-week old Arabidopsis seedlings grown on agar were subjected to 24 hours of cold (4°C) treatment under long day conditions. Control and cold-treated plants were harvested at the same time to ensure that observed differences would not be due to circadian clock effects on transcripts. Total RNA from four biological repeats were used for microarray hybridization.
Project description:We analysed the effect of cold priming on cold and high light regulation of gene expression. 5 days after the first cold treatment the primary stress response was widely reset. Then, a second (triggering) cold stimulus (24 h 4 °C) and a triggering high-light stimulus (2 h 800 µmol quanta m-2 s-1), which regulate many stress responsive genes in the same direction in naïve plants, caused widely specific and even inverse regulation of priming-responsive genes.
Project description:Alternative splicing plays a major role in expanding the potential informational content of eukaryotic genomes. It is an important post-transcriptional regulatory mechanism that can increase protein diversity and affect mRNA stability. Cold stress, which adversely affects plants growth and development, regulates the transcription and splicing of plants splicing factors. This affects the pre-mRNA processing of many genes. To identify cold regulated alternative splicing we applied Affymetrix Arabidopsis tiling arrays to survey the transcriptome under cold treatment conditions.