Project description:Arabidopsis sfr mutants are deficient in cold acclimation during exposure to coolnon-freezing temperatures. Although not visibly affected by the cold they have lost the ability to survive subsequent freezing. We plan to investigate how the sfr2 and sfr6 mutants respond to low temperature on the gene expression level. Wild type plants that have undergone identical treatments in parallel are necessary controls. The cold treatment of plants in the rosette stage (soil grown in a 8/16 hours day/night cycle) will be carried out in a cooled growth chamber at 4 degrees for 24 hours (same light regimetreatment starting/ending at the 4th hour of light). The aerial parts of the treated and untreated plants will be collected and frozen immediately in liquid nitrogen for RNA extraction. Comparison of the cold response of thousands of Arabidopsis genes in the wild type to the situation in our freezing sensitive mutants will enhance our understanding of the cold response itself and illuminate the effect of the mutations on the cold acclimation process. Experimenter name = Irene Bramke Experimenter phone = 01784 44 3770 Experimenter fax = 01784 43 4326 Experimenter address = Royal Holloway Experimenter address = University of London Experimenter address = School of Biological Sciences Experimenter address = Bourne Building Experimenter address = Laboratory 406 Experimenter zip/postal_code = TW20 OEX Experimenter country = UK Keywords: growth_condition_design; genetic_modification_design
Project description:Arabidopsis sfr mutants are deficient in cold acclimation during exposure to coolnon-freezing temperatures. Although not visibly affected by the cold they have lost the ability to survive subsequent freezing. We plan to investigate how the sfr2 and sfr6 mutants respond to low temperature on the gene expression level. Wild type plants that have undergone identical treatments in parallel are necessary controls. The cold treatment of plants in the rosette stage (soil grown in a 8/16 hours day/night cycle) will be carried out in a cooled growth chamber at 4 degrees for 24 hours (same light regimetreatment starting/ending at the 4th hour of light). The aerial parts of the treated and untreated plants will be collected and frozen immediately in liquid nitrogen for RNA extraction. Comparison of the cold response of thousands of Arabidopsis genes in the wild type to the situation in our freezing sensitive mutants will enhance our understanding of the cold response itself and illuminate the effect of the mutations on the cold acclimation process. Experimenter name = Irene Bramke; Experimenter phone = 01784 44 3770; Experimenter fax = 01784 43 4326; Experimenter address = Royal Holloway; Experimenter address = University of London; Experimenter address = School of Biological Sciences; Experimenter address = Bourne Building; Experimenter address = Laboratory 406; Experimenter zip/postal_code = TW20 OEX; Experimenter country = UK Experiment Overall Design: 6 samples were used in this experiment
Project description:Plants in temperate regions have evolved mechanisms to survive sudden temperature drops. Previous reports have indicated that the cold acclimation mechanism is light-dependent and does not fully operate under a low light intensity. In these studies, plants were grown under a long-day photoperiod and were more sensitive to freezing stress. However, winter annuals like Arabidopsis thaliana Col-0 germinate in the fall, overwinter as rosettes, and therefore must acclimate under short photoperiods and low irradiance. The role of light intensity was analysed in plants grown under a short-day photoperiod at the growth stage 1.14. Plants were acclimated at 4 °C for seven days under 100 and 20 μmol m-2s-1 PPFD for control and limited-light conditions, respectively. All cold acclimated plants accumulated molecular markers reportedly associated with acquired freezing tolerance, including proline, sucrose, CBFs, and COR gene protein products dehydrins and low-temperature-responsive proteins LTIs. Observed changes indicated that low PPFD did not inhibit the cold acclimation process, and the freezing stress experiment confirmed similar survival rates. The molecular analysis found distinct PPFD-specific adaptation mechanisms that were manifested in contrasting content of anthocyanins, cytokinin conjugates, abundances of proteins forming photosystems, and enzymes of protein, energy, and ROS metabolism pathways. Finally, this study led to the identification of putative proteins and metabolite markers correlating with susceptibility to freezing stress of non-acclimated plants grown under low PPFD. Our data show that Arabidopsis plants grown under short-day photoperiod can be fully cold-acclimated under limited light conditions, employing standard and PPFD-specific pathways.
Project description:In order to better understand the transcriptional networks triggered by pathogen inoculation, we monitored gene expression in leaves of mutant Arabidopsis plants, inoculated with Pseudomonas syringae ES4326 and wild type Col-0 plants grown in parallel. Individual leaves were injected in the morning using a needle-less syringe with 10E5 cfu cm-2 PsmES4326 (suspended in 5 mM MgSO4). For the wild type, leaves were also mock treated with 5 mM MgSO4. Leaves were harvested 24 hours later. Plants were grown in pots with BM-2 soil (Berger Peat Moss Ltd, Quebec, Canada) at a density of 9 plants per pot and kept at 22 degrees Celsius with 75% humidity and a 12 hour day length. Keywords: Expression profilling by array
Project description:How do the transcript levels of leaf-expressed genes change in a normal day-night cycle? The interest is in genes that are regulated by the circadian clock and the diurnal component (i.e. light, metabolite changes). Plants were grown on soil in a 12/12 h light/dark rythm at 20°C day and night. 5 weeks after germination the rosettes of the non-flowering plants were harvested, 15 plants per sample. Plants were harvested at 6 timepoints every 4 hours beginning with the end of the night (still in darkness). Keywords: repeat
Project description:rs11-07_opine2 - septante soil - Transcriptomic changes induced by opine production in Arabidopsis thaliana grown in natural soil - Arabidopsis thalian Col- line was transformed in order to obtain transgenic lines that produce opine compound (octopine and mannopine). Transgenic lines producing respectively octopine and mannopine and the WT line were grown in greenhouse under long-day condition in pots containing half commercial compost and half soil of la Mérantaise and watered with water. Whole plant aged of one month were harvested and frozen in liquid nitrogen. The plants were ground with a mortar an pestls and RNA extraction was performed with the RNeasy extraction kit (QIAGEN) with cristal of PVP. The RNA concentration was measured on a NANODrop spectrophotometer.
Project description:We performed RNA-Seq based gene expression analysis of Arabidopsis Col-0 plants grown under axenic and holoxenic conditions in FlowPot system. Holoxenic plants were grown in the presence of soil slurries containing microbial communities derived from natural soils and under axenic condition in presence of heat-killed soil slurries for three weeks. We identified genes differentially enriched in response to presence of microbial communities. Our results suggested that in presence of microbiota there is a differential expression of immunity/defense-related genes in holoxenic compared to axenic plants.
Project description:Arabidopsis thaliana plants are grown for one week in a hydroponic growth system and transferred to new plant medium containing low levels of Caesium-137 (control is transferred to new medium with no radioactivity) and left for further two weeks. Levels of Caesium-137 are chosen according to research and are reflecting occurring levels found in radioactive contaminated soil. The plants are then harvested and the samples divided into shoot and root samples. Experimenter name = Yu-Jin Heinekamp Experimenter phone = 0044-117-3442102 Experimenter address = University of the West of England (UWE) Experimenter address = Faculty of Applied Sciences Experimenter address = Center for Research in Plants, GRI Experimenter address = Coldharbour Lane Experimenter address = Bristol Experimenter zip/postal_code = BS6 5BP Experimenter country = UK Keywords: organism_part_comparison_design
Project description:STO2 is a novel MYB like protein which belongs to one of the most important transcription factors in planta. Microarray analysis of sto2 null mutant compared to Columbia with three-week-old soil-grown plants revealed that STO2 function in ABA and salt stress response.