Project description:Methicillin-resistant Staphylococcus aureus (MRSA) is a major threat to human health. Rather than depend on creating new antibiotics (to which bacteria will eventually become resistant), we are employing antibiotic adjuvants that potentiate existing antibiotics. Based on our previous work, loratadine, the FDA-approvide antihistamine, effectively potentiates cell-wall active antibiotics in multiple strains of MRSA. Furthermore, loratadine and oxacillin helped disrupt preformed biofilms and stop them from initially forming in vitro. To gain biological insight into how this potentiation and biofilm inhibition occurs, we used RNA-seq on treated MRSA 43300 cultures to examine antibiotic adjuvant affects transcritome-wide.
Project description:To identify radiation-induced miRNAs, we initially profiled human miRNA expression in NSCLC A549 and H1299 cells treated with X-ray radiation using miRNA microarrays. Indeed, we observed multiple dysregulated miRNAs following radiation in NSCLC cell lines.
Project description:A549 WT and Rab11 deleted cell lines were infected with influenza-A and treated with nucleozin. We have evaluated the effect of an antiviral drug, nucleozin, on protein solubility at 13 hpi with influenza-A virus.
Project description:Illumina miRNA-seq method to uncover the expression profile of NSCLC in-vitro experimental models consisting of cell lines A549, H460 compared to healthy BEAS-2B cell line, and lung tissue (NSCLC and paired normal) from urethane treated 6-week-old FVB/NJ mice. We aimed to uncover the divergent epigenetic background of KRAS-mutant NSCLC in mouse and human cell lines, extensively used as biological models in relevant research. To that end, we have comprehensively mapped the functional miRNA and lncRNA landscape of human (A549 and H460) and mouse (experimentally developed LUAD) NSCLC models and correlated current results with LRF/ZBTB7A expression
Project description:Circ101093 was knocked down in A549 LUAD cell lines, and overexpressed in H1975 LUAD cell lines. Then, downregulated proteins in A549 cell lines and upregulated proteins in H1975 cell lines were analyzed.
Project description:Non-small cell lung cancer (NSCLC) is the most lethal and prevalent type of lung cancer. In almost all types of cancer, the levels of polyamines (putrescine, spermidine, and spermine) are increased, playing a pivotal role in tumor proliferation. Indomethacin, a non-steroidal anti-inflammatory drug, increases the abundance of an enzyme termed spermidine/spermine-N1-acetyltransferase (SSAT) encoded by the SAT1 gene. This enzyme is a key player in the export of polyamines from the cell. The aim of this study was to compare the effect of indomethacin on two NSCLC cell lines, and their combinatory potential with polyamine-inhibitor drugs in NSCLC cell lines. A549 and H1299 NSCLC cells were exposed to indomethacin and evaluations included SAT1 expression, SSAT levels, and the metabolic status of cells. Moreover, the difference in polyamine synthesis enzymes among these cell lines as well as the synergistic effect of indomethacin and chemical inhibitors of the polyamine pathway enzymes on cell viability were investigated. Indomethacin increased the expression of SAT1 and levels of SSAT in both cell lines. In A549 cells, it significantly reduced the levels of putrescine and spermidine. However, in H1299 cells, the impact of treatment on the polyamine pathway was insignificant. Also, the metabolic features upstream of the polyamine pathway (i.e., ornithine and methionine) were increased. In A549 cells, the increase of ornithine correlated with the increase of several metabolites involved in the urea cycle. Evaluation of the levels of the polyamine synthesis enzymes showed that ornithine decarboxylase is increased in A549 cells, whereas S-adenosylmethionine-decarboxylase and polyamine oxidase are increased in H1299 cells. This observation correlated with relative resistance to polyamine synthesis inhibitors eflornithine and SAM486 (inhibitors of ornithine decarboxylase and S-adenosyl-L-methionine decarboxylase, respectively), and MDL72527 (inhibitor of polyamine oxidase and spermine oxidase). Finally, indomethacin demonstrated a synergistic effect with MDL72527 in A549 cells and SAM486 in H1299 cells. Collectively, these results indicate that indomethacin alters polyamine metabolism in NSCLC cells and enhances the effect of polyamine synthesis inhibitors, such as MDL72527 or SAM486. However, this effect varies depending on the basal metabolic fingerprint of each type of cancer cell.
2021-02-08 | MTBLS873 | MetaboLights
Project description:Cholesterol treated lung cancer cell A549
Project description:GPX3 has been reported to be involved in antioxidant, anticancer, and anti-inflammation in various studies. It is also known that expression of GPX3 is low in lung cancer tissues. We performed a microarray using three lung cancer cell lines including A549, H1650, and H1975 lung cancer cell lines. Among these, A549 is highly expressed in GPX3 as compared with H1650 and h1975. Microarrays were used to analyze microRNAs showing other expression between A549 and the other two cell lines.
Project description:293T and A549 COVGT#5 reporter cell lines treated with COVGT#5 inducers IFN mix or 3p-hpRNA and synergistic drug combinations to identify co-regulated genes upon COVGT#5 modulation.