Project description:Since the etiology of diabetic chronic kidney disease (CKD) is multifactorial, studies on DNA methylation for kidney function deterioration have rarely been performed despite the need for an epigenetic approach. Therefore, this study aimed to identify epigenetic markers associated with CKD progression based on the decline in the estimated glomerular filtration rate in diabetic CKD in Korea.
Project description:Gene expression in kidney cortex of diabetic mice and menopausal diabetic mice following 6 weeks of diabetes. Diabetes was induced with low-dose streptozotocin injections and menopause was induced by injection of 4-vinylcyclohexene diepoxide. Samples = 12
Project description:This SuperSeries is composed of the following subset Series: GSE30528: Transcriptome Analysis of Human Diabetic Kidney Disease (DKD Glomeruli vs. Control Glomeruli) GSE30529: Transcriptome Analysis of Human Diabetic Kidney Disease (DKD Tubuli vs. Control Tubuli) GSE30566: Transcriptome Analysis of Human Diabetic Kidney Disease (Control Glomeruli vs. Control Tubuli) Refer to individual Series
Project description:Gene expression in kidney cortex of diabetic mice and menopausal diabetic mice following 6 weeks of diabetes. Diabetes was induced with low-dose streptozotocin injections and menopause was induced by injection of 4-vinylcyclohexene diepoxide.
Project description:Since the etiology of diabetic chronic kidney disease (CKD) is multifactorial, studies on DNA methylation for kidney function deterioration have rarely been performed despite the need for an epigenetic approach. Therefore, this study aimed to identify epigenetic markers associated with CKD progression based on the decline in the estimated glomerular filtration rate in diabetic CKD in Korea. An epigenome-wide association study was performed using whole blood samples from 180 CKD recruited from the KNOW-CKD cohort. Pyrosequencing was also performed on 133 CKD participants as an external replication analysis. Functional analyses, including the analysis of disease-gene networks, reactome pathways, and protein-protein interaction networks, were conducted to identify the biological mechanisms of CpG sites. A phenome-wide association study was performed to determine the associations between CpG sites and other phenotypes. Two epigenetic markers, cg10297223 on AGTR1 and cg02990553 on KRT28 indicated a potential association with diabetic CKD progression. Based on the functional analyses, other phenotypes (blood pressure and cardiac arrhythmia for AGTR1) and biological pathways (keratinization and cornified envelope for KRT28) related to CKD were also identified. This study suggests a potential association between the cg10297223 and cg02990553 and the progression of diabetic CKD in Koreans. Nevertheless, further validation is needed through additional studies.
Project description:Genome wide DNA methylation profiling of urine and blood samples from patients with diabetic chronic kidney disease. The Illumina Infinium MethylationEPIC BeadChip kit was used to obtain DNA methylation profiles across approximately 850,000 CpGs. Samples included two urine and four buffy coat samples from adults with diabetic chronic kidney disease.
Project description:We investigated the gene expression profiles of RNA isolated from kidney glomeruli from aged, 25 week old type-2 diabetic (db/db) and non-diabetic mice. In order to investigate the consequences of hyperglycemia on the pathogenesis and progression of diabetic nephropathy Kidney glomeruli from 3 diabetic and 3 non-diabetic, control mice were isolated and RNA purified for RNA-Seq analysis on the Illumina HiSeq 2000. The goal of the project was to generate comprehensive list of noncoding RNA genes differentially regulated between the two conditions in order to identify novel targets for further study.
Project description:identified cluster of microRNAs significantly increased in kidney glomeruli from diabetic mice compared to nondiabetic control mice RNAs from kidney glomeruli from control mice and STZ-injected diabetic mice were extracted.