Project description:Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River.
Project description:Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River. Three groups of samples, A, B and C. Every group has 3 replicates.
Project description:The synthetic microbial community used in this study was composed of the major functional guilds (cellulolytic fermenter, sulfate reducer, hydrogenotrophic methanogen and acetoclastic methanogen) that mediate the anaerobic conversion of cellulosic biomass to CH4 and CO2 in wetland soils. The choice of a facultative sulfate-reducing bacterium (Desulfovibrio vulgaris Hildenborough) introduced metabolic versatility and enabled investigations into the community response to sulfate intrusion. The growth status of these multi-species cultures was measured over a week by daily analysis of substrate consumption and product accumulation. The quad-cultures were analyzed with metaproteomics at the end of experiment to characterize the community structure and metabolic activities.
Project description:Investigation of mRNA expression (using HiSeq 2500) in response to treatment of Daphnia magna to pyriproxyfen, wetland water, or stormwater samples.
Project description:Analysis of microbial gene expression in response to physical and chemical gradients forming in the Columbia River, estuary, plume and coastal ocean was done in the context of the environmental data base. Gene expression was analyzed for 2,234 individual genes that were selected from fully sequenced genomes of 246 prokaryotic species (bacteria and archaea) as related to the nitrogen metabolism and carbon fixation. Seasonal molecular portraits of differential gene expression in prokaryotic communities during river-to-ocean transition were created using freshwater baseline samples (268, 270, 347, 002, 006, 207, 212).
Project description:Total bacterial DNA was isolated from water and sediment samples from a local watershed and 16S rRNA sequences were analyzed using the Illumina MiSeq v3 platform in order to generate snapshots of bacterial community profiles.