Project description:The study investigated the ability of selected (hyper-)thermophilic prokaryotes to grow anaerobically by the reduction of perchlorate and chlorate. Physiological, genomic and proteome analyses suggest that the Crenarchaeon Aeropyrum pernix reduces (per)chlorate with a periplasmic enzyme related to nitrate reductases, while it lacks a functional chlorite-disproportionating enzyme (Cld). A. pernix seems to rely on the chemical reactivity of reduced sulfur compounds with the toxic intermediate chlorite to complete the pathway. The chemical oxidation of thiosulfate (in excessive amounts present in the medium) to sulfate and the concomitant release of chloride anions from the reduction of chlorite are the products of a biotic-abiotic (per)chlorate reduction pathway in A. pernix. The apparent absence of Cld in two other (per)chlorate-reducing microorganisms and their dependence on sulfide for (per)chlorate reduction is consistent with earlier-made observations on (per)chlorate-reducing Archaeoglobus fulgidus. All here discussed microorganisms use strategies for complete (per)chlorate reduction that differ from the physiology of classical (per)chlorate-reducing mesophiles.
Project description:By in silico analysis, we have identified two putative proviruses in the genome of the hyperthermophilic archaeon Aeropyrum pernix, and under special conditions of A. pernix growth, we were able to induce their replication. Both viruses were isolated and characterized. Negatively stained virions of one virus appeared as pleomorphic spindle-shaped particles, 180 to 210 nm by 40 to 55 nm, with tails of heterogeneous lengths in the range of 0 to 300 nm. This virus was named Aeropyrum pernix spindle-shaped virus 1 (APSV1). Negatively stained virions of the other virus appeared as slightly irregular oval particles with one pointed end, while in cryo-electron micrographs, the virions had a regular oval shape and uniform size (70 by 55 nm). The virus was named Aeropyrum pernix ovoid virus 1 (APOV1). Both viruses have circular, double-stranded DNA genomes of 38,049 bp for APSV1 and 13,769 bp for APOV1. Similarities to proteins of other archaeal viruses were limited to the integrase and Dna1-like protein. We propose to classify APOV1 into the family Guttaviridae.