Project description:Paneth cells of intestinal crypts contribute to host defense by producing antimicrobial peptides that are packaged as granules for secretion into the crypt lumen. Here, we provide evidence using light and electron microscopy that postsecretory Paneth cell granules undergo limited dissolution and accumulate within the intestinal crypts of cystic fibrosis (CF) mice. On the basis of this finding, we evaluated bacterial colonization and expression of two major constituents of Paneth cells, i.e., {alpha}-defensins (cryptdins) and lysozyme, in CF murine intestine. Paneth cell granules accumulated in intestinal crypt lumens in both untreated CF mice with impending intestinal obstruction and in CF mice treated with an osmotic laxative that prevented overt clinical symptoms and mucus accretion. Ultrastructure studies indicated little change in granule morphology within mucus casts, whereas granules in laxative-treated mice appear to undergo limited dissolution. Protein extracts from CF intestine had increased levels of processed cryptdins compared with those from wild-type (WT) littermates. Nonetheless, colonization with aerobic bacteria species was not diminished in the CF intestine and oral challenge with a cryptdin-sensitive enteric pathogen, Salmonella typhimurium, resulted in greater colonization of CF compared with WT intestine. Modest downregulation of cryptdin and lysozyme mRNA in CF intestine was shown by microarray analysis, real-time quantitative PCR, and Northern blot analysis. Based on these findings, we conclude that antimicrobial peptide activity in CF mouse intestine is compromised by inadequate dissolution of Paneth cell granules within the crypt lumens. Keywords: other
Project description:Paneth cells of intestinal crypts contribute to host defense by producing antimicrobial peptides that are packaged as granules for secretion into the crypt lumen. Here, we provide evidence using light and electron microscopy that postsecretory Paneth cell granules undergo limited dissolution and accumulate within the intestinal crypts of cystic fibrosis (CF) mice. On the basis of this finding, we evaluated bacterial colonization and expression of two major constituents of Paneth cells, i.e., {alpha}-defensins (cryptdins) and lysozyme, in CF murine intestine. Paneth cell granules accumulated in intestinal crypt lumens in both untreated CF mice with impending intestinal obstruction and in CF mice treated with an osmotic laxative that prevented overt clinical symptoms and mucus accretion. Ultrastructure studies indicated little change in granule morphology within mucus casts, whereas granules in laxative-treated mice appear to undergo limited dissolution. Protein extracts from CF intestine had increased levels of processed cryptdins compared with those from wild-type (WT) littermates. Nonetheless, colonization with aerobic bacteria species was not diminished in the CF intestine and oral challenge with a cryptdin-sensitive enteric pathogen, Salmonella typhimurium, resulted in greater colonization of CF compared with WT intestine. Modest downregulation of cryptdin and lysozyme mRNA in CF intestine was shown by microarray analysis, real-time quantitative PCR, and Northern blot analysis. Based on these findings, we conclude that antimicrobial peptide activity in CF mouse intestine is compromised by inadequate dissolution of Paneth cell granules within the crypt lumens. Total RNA was extracted from pooled small intestines of three WT and three CF mice using Tri-Reagent (Molecular Research Center, Cincinnati, OH), and poly(A) RNA was purified by using the MicroPoly(A) mRNA purification kit (Ambion, Austin, TX). The WT and CF poly(A) RNA samples were sent to IncyteGenomics (St. Louis, MO) where they were labeled with cyanine 3 (Cy3) and Cy5, respectively, and hybridized with the UniGEM1.31 array representing 9,570 known genes and expressed sequence tags.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:This study delineated how small intestinal resident microflora impact gene expression in Paneth cells. Keywords: functional genomics; transcriptional profiling
Project description:The impact of Mll1 removal on the intestinal stem cells and its direct effect on neighbouring Paneth cells was evaluated in sorted intestinal stem and Paneth cells from Mll1FC/+; Lgr5-eGFP-CreERT2/+ (control) and Mll1FC/FC; Lgr5-eGFP-CreERT2/+ (knockout) mice, 4 and 10 days after tamoxifen-induced mutagenesis. Using 75-base-pair reads, 30 million reads per sample with comparable unique mapped reads for stem (70-77%) and Paneth (60-76%) cells were obtained. To analyze differentially expressed genes, we applied DESeq2 analysis to the RNA-seq dataset. Analysis by DAVID and GSEA at a false discovery rate (FDR) of 5% was conducted.The stem cell transcriptome revealed that Mll1 knockout stem cells exhibited a decreased expression of several transcription factors and stem cell genes. Additionally, Mll1 ablation in stem cells had an impact on Paneth cells. Downregulation of Paneth cell specific markers indicated a loss of Paneth cell identity.
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:This study delineated how small intestinal resident microflora impact gene expression in Paneth cells. Experiment Overall Design: Paneth cells were isolated by laser capture microdissection from the small intestines of germ-free and conventionalized (10 day) mice. RNAs from 3 mice per group were pooled, and duplicate RNAs from each group were amplified and hybridized to Affymetrix arrays.
Project description:BackgroundCopy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously.ResultsWe found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR).ConclusionThe analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.