Project description:Proper lung development and function maintenance depend on the cross-talk between resident immune cell populations and lung epithelial cells. However, understanding the underlying cellular and molecular mechanisms are difficult to study in human. Here, we present a method to develop macrophage-containing alveolar organoids from human pluripotent stem cells to investigate reciprocal interactions between alveolar macrophages and epithelial cells in lung development.
Project description:Proper lung development and function maintenance depend on the cross-talk between resident immune cell populations and lung epithelial cells. However, understanding the underlying cellular and molecular mechanisms are difficult to study in human. Here, we present a method to develop macrophage-containing alveolar organoids from human pluripotent stem cells to investigate reciprocal interactions between alveolar macrophages and epithelial cells in lung development.
Project description:Underdeveloped lungs are the primary cause of death in premature infants, however, little is known about stem and progenitor cell maintenance during human lung development. In this study, we have identified that FGF7, Retinoic Acid and CHIR-99021, a small molecule that inhibits GSK3 to activate Wnt signaling, support in vitro maintenance of primary human fetal lung bud tip progenitor cells in a progenitor state. Furthermore, these factors are sufficient to derive a population of human bud tip-like progenitor cells in 3D organoid structures from human pluripotent stem cells (hPSC). Functional studies showed that hPSC-derived bud tip progenitor organoids do not contain any mesenchymal cell types, maintain multilineage potential in vitro and are able to engraft into the airways of injured mice and respond to systemic factors. We performed RNA-sequencing to assess the degree of similarity in global gene expression profiles between the full human fetal lung (59-127 days gestation), isolated human fetal bud tip progenitors, organoids grown from primary fetal bud tip progenitors, and hPSC-derived bud tip organoids. Results showed that hPSC-derived organoids have molecular profiles similar to organoids generated from primary human fetal lung tissue. Gene expression differences between hPSC-derived bud tip organoids and fetal progenitor organoids may be related to the presence of contaminating mesenchymal cells in primary cultures. hPSC-derived bud tip organoids are generated from a well-defined human cell sources, offering a distinct advantage over rare primary tissue as a means to study human specific lung development, homeostasis and disease.<br>Sample Nomenclature - Description<br> -------------------------------------------------------------------------<br> Peripheral fetal lung the distal/peripheral portion of the fetal lung (i.e., distal 0.5 cm) was excised from the rest of the lung using a scalpel. This includes all components of the lung (e.g., epithelial, mesenchymal, vascular). <br>Isolated fetal bud tip the bud peripheral portion of the fetal lung was excised with a scalpel and subjected to enzymatic digestion and microdissection. The epithelium was dissected and separated from the mesenchyme, but a small amount of associated mesenchyme likely remained. <br>Fetal progenitor organoid 3D organoid structures that arose from culturing isolated fetal epithelial bud tips. <br>Foregut spheroid 3D foregut endoderm structure as described in Dye et al. (2015). Gives rise to patterned lung organoid (PLO) when grown in 3F medium. <br> Patterned lung organoid (PLO) lung organoids that were generated by differentiating hPSCs, as described throughout the manuscript. <br> Bud tip organoid organoids derived from PLOs, enriched for SOX2/SOX9 co-expressing cells, and grown/passaged in 3F medium.
Project description:scRNA-Seq of iPS cells derived multicellular human liver organoids RNA-Seq of multicellular human liver organoids derived from 3 different iPS cells
Project description:Purpose: Transcriptome profiling of Crytosporidium parvum infected lung and small intestinal organoids was performed to access the response of epithelial cells upon parasitic infection and to do a temporal analysis of the transcriptome of the parasite inside the organoid lumen. We isolated RNA from infected human lung and small intestinal organoids at 24 and 72 hour post infection. Methods: Organoids were grown in expansion or differentiation media and microinjected with equal amounts of Cryptosporidium oocysts. Media-injected organoids were used as a control .Expanding SI organoids were microinjected at 5-6 days after seeding, differentiated SI organoids were injected at 5 days after inducing differentiation. Lung organoids were incubated for 2 weeks after seeding for microinjection. RNA was extracted from 1-2 matrigel drops containing organoids. RNA was converted to cDNA and libraries were prepared using the CelSeq2 method and sequenced. Samples were sequenced on Illumina NextSeq500 by using 75-bp paired-end sequencing. Methods: Paired-end reads from Illumina sequencing were aligned to the human transcriptome genome and C. parvum transcriptome genome (Iowa strain) by BWA. DeSeq (v1.18.0) was used for read normalization and differential expression analysis (p-value adjustment 0.05 by method Benjamini-Hochberg). Gene set enrichment analysis (GSEA) was performed using gene lists for type I interferon response and regulation against normalized RNA-seq reads of injected SI and lung organoids using GSEA software v3.0 beta2. Results: At 24 hr post-infection,GO (gene ontology)-term analysis revealed that a substantial number of genes related to ‘cytoskeleton’ and ‘cell mobility’ were up-regulated in lung organoids. This suggests that infection by the parasites and subsequent formation of the intracellular stages within 24 hrs might affects cytoskeleton structures of host cells. After 72 hrs, many genes associated with the type I interferon pathway increased dramatically in lung and intestinal organoids. Results: After 72 hrs, many genes associated with the type I interferon pathway increased dramatically in lung and intestinal organoids. Multiple C. parvum genes were differentially expressed with a large fold change between 24 and 72 hr post-injection.At 24 hr post-infection, most of the enriched genes represented ribosomal proteins and ribosomal RNA subunits in both intestinal organoids and lung organoids. By contrast, at 72 hr post-infection, multiple oocyst-wall protein genes were up-regulated, confirming that the parasites formed new oocysts within the organoids. Conclusions: RNA sequencing of injected organoids revealed host epithelial responses upon parasite infection in differentiated SI organoids as well as in lung organoids.Upregulation of genes associated with type I interferon immunity in both SI and lung organoids.