Project description:Soil qualities and rootstocks are among the main factors that have been acknowledged to influence grape development as well as fruit and wine composition. Despite the role of the soil and rootstock in establishing a successful vineyard in terms of grape quality, almost no molecular evidence linking soil and rootstock properties to the gene expression have been reported. The transcriptome variation in response to different soils and rootstocks was investigated through microarray technology. The cv. Pinot Noir was grown on different soils: sand, turf and vineyard soil. The plants were grafted on the contrasting 101-14 and 1103 Paulsen rootstocks. The modulation of genes expression in response to different soils and rootstocks was evaluated considering their potential impact on primary (carbohydrate) and secondary (phenylpropanoid) metabolisms. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Alessio Aprile. The equivalent experiment is VV41 at PLEXdb.]
Project description:Purpose: The identification of genes in Sauvignon blanc berries which respond to nitrogen fertilization at (v+28) and at (v+35) and the identification of genes potentially involved in 3SH precursors biosynthesis. Methods: Grape berries mRNA profiles of control vine (C) and vine fertilized with 100 U/ha of nitrogen (Soil N100) at (v+28) and at (v+35) in 2013 and 2014 were generated by deep sequencing, in triplicate. Results: Genes in Sauvignon blanc berries at 2 stages ((v+28) and (v+35)) which respond to nitrogen supply were identified and genes potentially involved in 3SH precursors synthesis were described.
Project description:Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Important functional genes, which characterize the rhizosphere microbial community, were identified to understand metabolic capabilities in the maize rhizosphere using GeoChip 3.0-based functional gene array method. Triplicate samples were taken for both rhizosphere and bulk soil, in which each individual sample was a pool of four plants or soil cores. To determine the abundance of functional genes in the rhizosphere and bulk soils, GeoChip 3.0 was used.
Project description:Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Important functional genes, which characterize the rhizosphere microbial community, were identified to understand metabolic capabilities in the maize rhizosphere using GeoChip 3.0-based functional gene array method. Triplicate samples were taken for both rhizosphere and bulk soil, in which each individual sample was a pool of four plants or soil cores. To determine the abundance of functional genes in the rhizosphere and bulk soils, GeoChip 3.0 was used.
Project description:Arsenic (As) bioavailability in the rice rhizosphere is influenced by many microbial interactions, particularly by metal-transforming functional groups at the root-soil interface. This study was conducted to examine As-transforming microbes and As-speciation in the rice rhizosphere compartments, in response to two different water management practices (continuous and intermittently flooded), established on fields with high to low soil-As concentration. Microbial functional gene composition in the rhizosphere and root-plaque compartments were characterized using the GeoChip 4.0 microarray. Arsenic speciation and concentrations were analyzed in the rhizosphere soil, root-plaque, porewater and grain samples. Results indicated that intermittent flooding significantly altered As-speciation in the rhizosphere, and reduced methyl-As and AsIII concentrations in the pore water, root-plaque and rice grain. Ordination and taxonomic analysis of detected gene-probes indicated that root-plaque and rhizosphere assembled significantly different metal-transforming functional groups. Taxonomic non-redundancy was evident, suggesting that As-reduction, -oxidation and -methylation processes were performed by different microbial groups. As-transformation was coupled to different biogeochemical cycling processes establishing functional non-redundancy of rice-rhizosphere microbiome in response to both rhizosphere compartmentalization and experimental treatments. This study confirmed diverse As-biotransformation at root-soil interface and provided novel insights on their responses to water management, which can be applied for mitigating As-bioavailability and accumulation in rice grains.
Project description:Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Important functional genes, which characterize the rhizosphere microbial community, were identified to understand metabolic capabilities in the maize rhizosphere using GeoChip 3.0-based functional gene array method.
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:We present metaproteome data from maize rhizosphere from sodic soil. Isolation of proteome from maize rhizosphere collected from Experimental Farm, ICAR-IISS, Mau, India was done with the standardized protocol at our laboratory and metaproteome analysis was done with the standardized pipepline. In total 696 proteins with different functions representing 245 genus and 395 species were identified. The proteome data provides direct evidence on the biological processes in soil ecosystem and is the first reported reference data from maize rhizosphere.