Project description:To identify differentially expressed genes in androgenetic alopecia specifically in the adipose, adipose tissue samples from affected male participants were collected through punch biopsy at two different sites: bald (frontal) and normal (occipital,as control) scalp. After removal of the epidermis, dermis and hair follicle, we isolated RNA from the remaining adipose layer of the bald and normal scalp then performed gene expression analysis on the RNA-seq data to compare the profiles of the bald and normal scalp.
Project description:Scalp psoriasis shows a variable clinical spectrum and in many cases poses a great therapeutic challenge. However, it remains unknown whether the immune response of scalp psoriasis differs from understood pathomechanisms of psoriasis on other skin areas. We sought to determine the cellular and mollecular phenotype of scalp psoriasis by performing a comparative analysis of scalp vs skin using lesional and nonlesional samples from 20 Caucasian subjects with untreated moderate to severe psoriasis and significant scalp involvement, and 10 control subjects without psoriasis. Our results suggest that even in the scalp psoriasis is a disease of the inter-follicular skin. The immune mechanisms that mediate scalp psoriasis were found to be similar to those involved in skin psoriasis. However, the magnitude of dysregulation, number of differentially expressed genes, and enrichment of the psoriatic genomic fingerprinting were more prominent in skin lesions. Furthermore, the scalp transcriptome showed increased modulation of several gene-sets, particularly those induced by interferon-gamma, compared with skin psoriasis which was mainly associated with activation of TNFâµ/L-17/IL-22-induced keratinocyte response genes. We also detected differences in expression of gene-sets involving negative regulation, epigenetic regulation, epidermal differentiation, and dendritic cell or Th1/Th17/Th22-related T-cell processes. To define the transcriptomic profile of scalp skin, punch biopsies (6 mm diameter) were obtained from 20 Caucasian patients with untreated moderate to severe psoriasis with significative scalp involvement and 10 control subjects without psoriasis (N). Lesional (LS) samples were isolated from the infiltrated border of a plaque of psoriasis. Non lesional (NL) samples were taken from scalp areas with no visible psoriasis between the infiltrated plaques.
Project description:Human scalp hair follicles were snapfrozen directly after surgery or organ-cultured in the presence/absence of SEP1 phages. After treatment total RNA was isolated and prepared for RNA-seq
Project description:Scalp psoriasis shows a variable clinical spectrum and in many cases poses a great therapeutic challenge. However, it remains unknown whether the immune response of scalp psoriasis differs from understood pathomechanisms of psoriasis on other skin areas. We sought to determine the cellular and mollecular phenotype of scalp psoriasis by performing a comparative analysis of scalp vs skin using lesional and nonlesional samples from 20 Caucasian subjects with untreated moderate to severe psoriasis and significant scalp involvement, and 10 control subjects without psoriasis. Our results suggest that even in the scalp psoriasis is a disease of the inter-follicular skin. The immune mechanisms that mediate scalp psoriasis were found to be similar to those involved in skin psoriasis. However, the magnitude of dysregulation, number of differentially expressed genes, and enrichment of the psoriatic genomic fingerprinting were more prominent in skin lesions. Furthermore, the scalp transcriptome showed increased modulation of several gene-sets, particularly those induced by interferon-gamma, compared with skin psoriasis which was mainly associated with activation of TNF↵/L-17/IL-22-induced keratinocyte response genes. We also detected differences in expression of gene-sets involving negative regulation, epigenetic regulation, epidermal differentiation, and dendritic cell or Th1/Th17/Th22-related T-cell processes.
Project description:EGFR/MEK inhibitor therapy induces a distinct inflammatory hair follicle response that includes a collapse of hair follicle immune privilege and differential modulation of IL-33 and IL-37 expression. Our findings suggest that successful future management of EGFRi/MEKi-induced folliculitis requires restoration of hair follicle immune privilege. In this RNAseq parietal scalp (rather than truncal skin) biopsies were taken from long-term (3-9 months) EGFRi-treated patients exhibiting folliculitis (Chronic-EGFRi) or from patients prior to commencing and after two weeks of EGFRi therapy (Acute-EGFRi), compared to normal scalp skin.
Project description:In this dataset, we include the expression data obtained from primary dermal papilla cell cultures and human hair follicle organ culture from occipital scalp
Project description:Transcriptome analysis of DP signature gene expression in hTERT-immortalized balding (BAB) and non-balding (BAN) dermal papilla cells derived from frontal and occipital scalp of male patients with androgenetic alopecia Hamilton grade IV.
Project description:In this study, we use single-cell ATAC sequencing (scATAC-seq) and single-cell RNA sequencing (scRNA-seq) to map chromatin accessibility and gene expression in human scalp samples from healthy patients and patients with alopecia areata
Project description:Testosterone is necessary for the development of male pattern baldness, known as androgenetic alopecia (AGA); yet the mechanisms for decreased hair growth in this disorder are unclear. Here, we show that prostaglandin D2 synthase (PTGDS) is elevated at the mRNA and protein levels in bald scalp compared to haired scalp of men with AGA. The product of PTGDS enzyme activity, prostaglandin D2 (PGD2), is similarly elevated in bald scalp. During normal follicle cycling in mice Ptgds and PGD2 levels increase immediately preceding the regression phase, suggesting an inhibitory effect on hair growth. We show that PGD2 inhibits hair growth in explanted human hair follicles and when applied topically to mice. Hair growth inhibition requires the PGD2 receptor G protein-coupled receptor 44 (GPR44), but not the prostaglandin D2 receptor 1(PTGDR). Furthermore, we find that a transgenic mouse, K14-Ptgs2, which targets prostaglandin-endoperoxide synthase 2 expression to the skin, demonstrates elevated levels of PGD2 in the skin and develops alopecia, follicular miniaturization and sebaceous gland hyperplasia, which are all hallmarks of human AGA. These results define PGD2 as an inhibitor of hair growth in AGA and suggest the PGD2-GPR44 pathway as a potential target for treatment. 5 individuals with Androgenetic Alopecia were biopsied at both their haired and bald scalp for mRNA purification and microarray (total 10 arrays)
Project description:We present the biopsy sub-study results from the first randomized, placebo-controlled clinical trial in patients with alopecia areata (AA) with ≥50% scalp hair loss and ≤7 years since the last AA episode. In this sub-study, we evaluated the molecular responses to PF-06651600, an oral inhibitor of JAK3 and the tyrosine kinase expressed in hepatocellular carcinoma (TEC) kinase family, and PF-06700841, an oral TYK2/JAK1 inhibitor, versus placebo in nonlesional and lesional scalp biopsies of biopsy samples from patients with AA.