Project description:Background: Human intestinal tissue samples are barely accessible to study potential health benefits of nutritional compounds. Dietary fibres have been descirbed to be beneficial for intestinal health. Therefore, in this study we explored the applicability of an in vitro model, namely human intestinal Caco-2 cells, to study the effect of dietary fibres on intestinal health. Transcriptomics was applied to obtain more insight into their mode of actions in the intestinal cells. Methods: Caco-2 cells were stimulated with 500 ug/ml dietary fibres and the maximal observed LPS contamination to serve as background control for 6 hours, total RNA was extracted and Affymterix Human Gene 1.1 ST arrays were used to analyze the gene expression profiles. To identify dietary fibre induced gene expression profiles in dietary fibre gene responses were compared to medium samples. Furthermore, to analyse differentiatlly affected pathways Ingenuite Pathway Analysis was employed. Results: Pathway analysis revealed a distinct separation between the dietary fibres. GOS and beta-glucan oat medium viscosity affected transcription of a lower amount of genes (gene cut-off p<0.05) and gen transcription changes suggest an increase in vesicle transport and altered cholesterol regulation. On the other hand, the other dietary fibres differentially regulated a larger numbers of genes (gene cut-off p<0.05) and all appeared related to immune responses. We observed an increase in intracellular and extracellular anti-bacterial pathways and production of cytokines specifically aimed at communication with the adaptive immune system. Conclusion: GOS and beta-glucan oat medium viscosity appeared to induce intestinal epithelial communication with the body, whereas the other dietary fibres appeared recognized as PAMP and induce epithelial cells to interact with the immune system.
Project description:The gut bacterium Coprococcus sp. ART55/1 has been found to encode two genes containing glycoside hydrolase family 9 (GH9) catalytic domains. These genes are hypothesised to impact upon the ability of this bacteria to utilise different carbon sources. To further investigate the role of these genes, as well as the wider transcriptome, Coprococcus sp. ART55/1 was grown on five different carbon sources - beta-glucan, lichenan, cellobiose, glucose and glucomannan - and the transcriptional response was investigated using RNA sequencing.
Project description:To evaluate the DC genome-wide gene expression in response to beta-glucan and its regulation by IL-1 receptor antagonist (IL-1RA) we used a whole genome microarray. The gene expression profiling was performed in DC left untreated or exposed to beta-glucan for 4 and 12 h, in absence or presence of IL-1RA. This strategy allowed the identification of early/immediate and late/secondary genes regulated by beta-glucan in an IL-1-dependent and -independent manner. Human monocyte-derived DC were obtained by a 6/7-d cultures of freshly isolated monocytes with recombinant human IL-4 (10 ng/ml) and GM-CSF (50 ng/ml). Beta-glucan-associated gene expression and its regulation by IL-1RA in human DC was measured in cells left untreated or at 4 and 12 h after exposure to 10 ug/ml of particulate beta-glucan in absence or presence of 2.5 ug/ml of IL-1RA. Five different conditions (Untreated 0h, beta-glucan 4h, IL-1RA + beta-glucan 4h, beta-glucan 12h, and IL-1RA + beta-glucan 12h) were tested using DC from three different donors.