Project description:In this study, we examined the transcriptome dynamics within the matured fully expanded rice leaf and used strand-specific RNA sequencing to generate a comprehensive transcriptome dataset for the mature rice leaf. The rice Nipponbare (Oryza sativa l. japonica) seedlings were grown in the greenhouse. About 20 days after planting, the fully opened 4th leaves was cut it into seven 3-cm segments, from bottom to tip and labeled as sections 1 to 7, respectively. The tissues were immediately frozen in liquid nitrogen for total RNA extraction. Two biological replicates were collected for each section. Note: All samples in SRA were assigned the same sample accession (SRS685294). This is incorrect as there are different samples, hence âSource Nameâ was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.
Project description:To understand the dynamics and global gene reprogramming in the early response to mechanical wounding in rice, the transcriptional response to mechanical injury was analyzed. A time-course experiment revealed the highly dynamic nature of the wound response in rice. Mechanical wounding triggered extensive gene expression reprogramming in the locally wounded leaf, affecting various physiological processes, including defense mechanisms and potentially tissue repair and regeneration. The rice response to mechanical wounding displayed both differences and similarities compared to the response to jasmonate treatment. These results highlight the importance of early JA signaling in response to mechanical stress in rice. This analysis provides an overview of the global transcriptional response to mechanical stress in rice, offering valuable insights for future studies on rice's response to injury, insect attack, and abiotic stresses.
Project description:This experiment was designed to identify transcribed regions of japonica subspecies of the rice genome. A series of high-density oligonucleotide tiling arrays that represent sense and antisense strands of the entire nonrepetitive sequence of all the 12 chromosomes were designed to measure genome-wide transcription. A total of 12253842 36mer oligonucleotide probes positioned every 46 nt on average were used for this purpose. The probes were synthesized via maskless photolithography at a feature density of approximately 389,000 probes per slide. The arrays were hybridized with fluorescence-labeled cDNA reverse-transcribed from equal amounts of four selected poly(A)+ RNA population (seedling root, seedling shoot, panicle, and suspension cultured cells). Keywords: tiling array, genome-wide transcription
Project description:Changes in patterns of gene expression are believed to be responsible for the phenotypic differences within and between species. Although the evolutionary significance of functional mutations has been emphasized in rice domestication, little is known about the differences in gene regulation underlying the phenotypic diversification among rice varieties. MicroRNAs (miRNAs) are small regulatory RNAs that play crucial roles in regulating post-transcriptional gene expression. Here, we studied the variation in the expression of both miRNAs and mRNA transcripts in three indica and three japonica rice varieties using RNA sequencing (RNA-seq) to examine the miRNA regulatory effect on target gene expression in rice. In total, 71.0%, 9.2%, and 1.5% of the expressed mature miRNAs showed tissue, subspecies, and tissue-subspecies interaction-biased expression. Most of these differentially expressed miRNAs are evolutionarily weakly conserved. To examine the miRNA regulatory effect on global gene expression under endogenous conditions, we performed pair-wise correlation coefficient analyses on the expression levels of 240 mature miRNAs and 1178 messenger RNAs (mRNAs) both globally and for each specific miRNA-mRNA pair. We found that the deeply conserved miRNAs can significantly decrease the target mRNA abundance. In addition, a total of 109 miRNA-mRNA pairs were identified as significantly correlated pairs (Adjusted p<0.01). Of those, 41 pairs showed positive correlations, while 68 pairs showed negative correlations. Functional analysis elucidated that these mRNAs belonged to different biological pathways that could regulate the stress response, metabolic processes, and rice development. In conclusion, the joint interrogation of miRNA and mRNA expression profiles in this study proved useful for the study of the role of miRNA expression and regulation in the plant transcriptome.
Project description:LongSAGE library in this series are from 'Whole Genome Analysis of Pathogen-Host Recognition and Subsequent Responses in the Rice Blast Patho-System' project. This work is supported by NSF-PGRP #0115642. Keywords: other